Skip to main content

PECVD Synthesis of Vertically-Oriented Graphene: Mechanism and Plasma Sources

  • Chapter
  • First Online:
Vertically-Oriented Graphene

Abstract

The plasma-enhanced chemical vapor deposition (PECVD) method is a key method for synthesizing vertically-oriented graphene (VG). Because the plasma region provides active species (e.g., energetic electrons, excited molecules and atoms, free radicals, and photons), PECVD offers several advantages in nanostructure synthesis, e.g., a relatively low substrate temperature, a high growth selectivity, and good control in nanostructure ordering/patterning. These features make PECVD the most suitable method for VG growth. On the other hand, the growth of VG using PECVD is a quite complex process due to the complexity of plasma chemistry. The morphology and structure of the VG sheets produced by PECVD are strongly dependent on the types of plasma sources and a series of operating parameters, such as feedstock gas type and composition, the substrate temperature, and the operating pressure. In this chapter, we first discuss the growth mechanism of VG in a PECVD process and then discuss how plasma sources affect the VG growth. Characterization of PECVD-produced VG from various plasma sources using Raman spectroscopy, a powerful tool to study carbon nanostructures, is also discussed in this chapter.

Part of this chapter was adapted from our review articles: “Plasma-Enhanced Chemical Vapor Deposition Synthesis of Vertically-oriented Graphene Nanosheets,” Nanoscale 5(12), 5180-5204, 2013 (DOI: 10.1039/C3NR33449J); and “Emerging Energy and Environmental Applications of Vertically-Oriented Graphenes,” Chemical Society Reviews, 2015 (DOI: 10.1039/C4CS00352G)—Reproduced by permission of The Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bo, Z., Yang, Y., Chen, J., Yu, K., Yan, J., & Cen, K. (2013). Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 5(12), 5180–5204.

    Article  Google Scholar 

  2. Bo, Z., Mao, S., Han, Z. J., Cen, K., Chen, J., & Ostrikov, K. (2015). Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews. doi:10.1039/C4CS00352G.

    Google Scholar 

  3. Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Van Tendeloo, G., et al. (2008). Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, 19(30), 305604.

    Article  Google Scholar 

  4. Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D. A., Rummeli, M. H., et al. (2014). Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon, 72, 372–380.

    Article  Google Scholar 

  5. Cai, M., Outlaw, R. A., Butler, S. M., & Miller, J. R. (2012). A high density of vertically-oriented graphenes for use in electric double layer capacitors. Carbon, 50(15), 5481–5488.

    Article  Google Scholar 

  6. Zhao, J., Shaygan, M., Eckert, J., Meyyappan, M., & Rummeli, M. H. (2014). A growth mechanism for free-standing vertical graphene. Nano Letters, 14(6), 3064–3071.

    Article  Google Scholar 

  7. Bo, Z., Yu, K., Lu, G., Wang, P., Mao, S., & Chen, J. (2011). Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 49(6), 1849–1858.

    Article  Google Scholar 

  8. Ostrikov, K., Neyts, E. C., & Meyyappan, M. (2013). Plasma nanoscience: From nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 62(2), 113–224.

    Article  Google Scholar 

  9. Yu, K., Wang, P., Lu, G., Chen, K.-H., Bo, Z., & Chen, J. (2011). Patterning vertically oriented graphene sheets for nanodevice applications. Journal of Physical Chemistry Letters, 2(6), 537–542.

    Article  Google Scholar 

  10. Hiramatsu, M., Shiji, K., Amano, H., & Hori, M. (2004). Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 84(23), 4708–4710.

    Article  Google Scholar 

  11. Zhu, M., Wang, J., Holloway, B. C., Outlaw, R. A., Zhao, X., Hou, K., et al. (2007). A mechanism for carbon nanosheet formation. Carbon, 45(11), 2229–2234.

    Article  Google Scholar 

  12. Seo, D. H., Rider, A. E., Han, Z. J., Kumar, S., & Ostrikov, K. (2013). Plasma break-down and re-build: Same functional vertical graphenes from diverse natural precursors. Advanced Materials, 25(39), 5638–5642.

    Article  Google Scholar 

  13. Ando, Y., Zhao, X., & Ohkohchi, M. (1997). Production of petal-like graphite sheets by hydrogen arc discharge. Carbon, 35(1), 153–158.

    Article  Google Scholar 

  14. Sugai, H., Ghanashev, I., & Mizuno, K. (2000). Transition of electron heating mode in a planar microwave discharge at low pressures. Applied Physics Letters, 77(22), 3523–3525.

    Article  Google Scholar 

  15. Nagatsu, M., Xu, G., Ghanashev, I., Kanoh, M., & Sugai, H. (1997). Mode identification of surface waves excited in a planar microwave discharge. Plasma Sources Science and Technology, 6(3), 427–434.

    Article  Google Scholar 

  16. Wu, Y. H., Qiao, P. W., Chong, T. C., & Shen, Z. X. (2002). Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Advanced Materials, 14(1), 64–67.

    Article  Google Scholar 

  17. Zhang, Y., Du, J. L., Tang, S., Liu, P., Deng, S. Z., Chen, J., & Xu, N. S. (2012). Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology. Nanotechnology, 23(1), 015202.

    Article  Google Scholar 

  18. Chabert, P. & Braithwaite, N. (2001). Physics of radio-frequency plasmas (pp. 1–385). New York: Cambridge University Press.

    Google Scholar 

  19. Hopwood, J. (1992). Review of inductively coupled plasmas for plasma processing. Plasma Sources Science and Technology, 1(2), 109–116.

    Article  Google Scholar 

  20. Wang, J. J., Zhu, M. Y., Outlaw, R. A., Zhao, X., Manos, D. M., & Holloway, B. C. (2004). Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon, 42(14), 2867–2872.

    Article  Google Scholar 

  21. Sato, G., T. Morio, T. Kato, & R. Hatakeyama. (2006). Fast growth of carbon nanowalls from pure methane using helicon plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics Part 1—Regular Papers Brief Communications & Review Papers, 45(6A), 5210–5212.

    Google Scholar 

  22. Ostrikov, K., Cvelbar, U., & Murphy, A. B. (2011). Plasma nanoscience: Setting directions, tackling grand challenges. Journal of Physics D-Applied Physics, 44(17), 174001.

    Article  Google Scholar 

  23. Paranjpe, A. P., McVittie, J. P., & Self, S. A. (1990). A tuned langmuir probe for measurements in RF glow-discharges. Journal of Applied Physics, 67(11), 6718–6727.

    Article  Google Scholar 

  24. Hopwood, J., Guarnieri, C. R., Whitehair, S. J., & Cuomo, J. J. (1993). Langmuir probe measurements of a radio-frequency induction plasma. Journal of Vacuum Science and Technology a-Vacuum Surfaces and Films, 11(1), 152–156.

    Article  Google Scholar 

  25. Lieberman, M. A. & Lichtenberg, A. J. (2005). Principles of plasma discharges and materials processing (2nd ed., pp. 1–757). New Jersey: Wiley.

    Google Scholar 

  26. Vizireanu, S., Stoica, S. D., Luculescu, C., Nistor, L. C., Mitu, B., & Dinescu, G. (2010). Plasma techniques for nanostructured carbon materials synthesis. A case study: Carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Science and Technology, 19(3), 034016.

    Article  Google Scholar 

  27. Malesevic, A., Vizireanu, S., Kemps, R., Vanhulsel, A., Van Haesendonck, C., & Dinescu, G. (2007). Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapor deposition. Carbon, 45(15), 2932–2937.

    Article  Google Scholar 

  28. Shiji, K., Hiramatsu, M., Enomoto, A., Nakamura, N., Amano, H., & Hori, M. (2005). Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 14(3–7), 831–834.

    Article  Google Scholar 

  29. Kondo, S., Hori, M., Yamakawa, K., Den, S., Kano, H., & Hiramatsu, M. (2008). Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology B, 26(4), 1294–1300.

    Article  Google Scholar 

  30. Takeuchi, W., Ura, M., Hiramatsu, M., Tokuda, Y., Kano, H., & Hori, M. (2008). Electrical conduction control of carbon nanowalls. Applied Physics Letters, 92(21), 213103.

    Article  Google Scholar 

  31. Obraztsov, A. N., Volkov, A. P., Nagovitsyn, K. S., Nishimura, K., Morisawa, K., Nakano, Y., & Hiraki, A. (2002). CVD growth and field emission properties of nanostructured carbon films. Journal of Physics D-Applied Physics, 35(4), 357–362.

    Article  Google Scholar 

  32. Paschen, F. (1889). Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik, 273(5), 69–96.

    Article  Google Scholar 

  33. Kurita, S., Yoshimura, A., Kawamoto, H., Uchida, T., Kojima, K., Tachibana, M., et al. (2005). Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 97(10), 104320.

    Article  Google Scholar 

  34. Banerjee, D., Mukherjee, S., & Chattopadhyay, K. K. (2011). Synthesis of amorphous carbon nanowalls by DC-PECVD on different substrates and study of its field emission properties. Applied Surface Science, 257(8), 3717–3722.

    Article  Google Scholar 

  35. Yu, K., Bo, Z., Lu, G., Mao, S., Cui, S., Zhu, Y., et al. (2011). Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 6, 202.

    Article  Google Scholar 

  36. Denysenko, I. B., Xu, S., Long, J. D., Rutkevych, P. P., Azarenkov, N. A., & Ostrikov, K. (2004). Inductively coupled Ar/CH4/H-2 plasmas for low-temperature deposition of ordered carbon nanostructures. Journal of Applied Physics, 95(5), 2713–2724.

    Article  Google Scholar 

  37. Ni, Z. H., Fan, H. M., Feng, Y. P., Shen, Z. X., Yang, B. J., & Wu, Y. H. (2006). Raman spectroscopic investigation of carbon nanowalls. Journal of Chemical Physics, 124(20), 204703.

    Article  Google Scholar 

  38. Soin, N., Roy, S. S., O’Kane, C., McLaughlin, J. A. D., Lim, T. H., & Hetherington, C. J. D. (2011). Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction. CrystEngComm, 13(1), 312–318.

    Article  Google Scholar 

  39. Soin, N., Roy, S. S., Lim, T. H., & McLaughlin, J. A. D. (2011). Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation. Materials Chemistry and Physics, 129(3), 1051–1057.

    Article  Google Scholar 

  40. Teii, K., Shimada, S., Nakashima, M., & Chuang, A. T. H. (2009). Synthesis and electrical characterization of n-type carbon nanowalls. Journal of Applied Physics, 106(8), 084303.

    Article  Google Scholar 

  41. Zhu, M. Y., Outlaw, R. A., Bagge-Hansen, M., Chen, H. J., & Manos, D. M. (2011). Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H-2 plasma enhanced CVD. Carbon, 49(7), 2526–2531.

    Article  Google Scholar 

  42. Jain, H. G., Karacuban, H., Krix, D., Becker, H.-W., Nienhaus, H., & Buck, V. (2011). Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor. Carbon, 49(15), 4987–4995.

    Article  Google Scholar 

  43. Cheng, C. Y., & Teii, K. (2012). Control of the growth regimes of nanodiamond and nanographite in microwave plasmas. IEEE Transactions on Plasma Science, 40(7), 1783–1788.

    Article  Google Scholar 

  44. Cancado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., et al. (2006). General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy. Applied Physics Letters, 88(16), 163106.

    Article  Google Scholar 

  45. Teii, K., & Ikeda, T. (2007). Effect of enhanced C-2 growth chemistry on nanodiamond film deposition. Applied Physics Letters, 90(11), 111504.

    Article  Google Scholar 

  46. French, B. L., Wang, J. J., Zhu, M. Y., & Holloway, B. C. (2005). Structural characterization of carbon nanosheets via X-ray scattering. Journal of Applied Physics, 97(11), 114317.

    Article  Google Scholar 

  47. Chuang, A. T. H., Boskovic, B. O., & Robertson, J. (2006). Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond and Related Materials, 15(4–8), 1103–1106.

    Article  Google Scholar 

  48. Wu, Y. H., Yu, T., & Shen, Z. X. (2010). Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. Journal of Applied Physics, 108(7), 071301.

    Article  Google Scholar 

  49. Wang, Z., Shoji, M., & Ogata, H. (2011). Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system. Applied Surface Science, 257(21), 9082–9085.

    Article  Google Scholar 

  50. Shang, N. G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., et al. (2008). Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials, 18(21), 3506–3514.

    Article  Google Scholar 

  51. Mori, T., Hiramatsu, M., Yamakawa, K., Takeda, K., & Hori, M. (2008). Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 17(7–10), 1513–1517.

    Article  Google Scholar 

  52. Zeng, L., Lei, D., Wang, W., Liang, J., Wang, Z., Yao, N., & Zhang, B. (2008). Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method. Applied Surface Science, 254(6), 1700–1704.

    Article  Google Scholar 

  53. Chatei, H., Belmahi, M., Assouar, M. B., Le Brizoual, L., Bourson, P., & Bougdira, J. (2006). Growth and characterisation of carbon nanostructures obtained by MPACVD system using CH4/CO2 gas mixture. Diamond and Related Materials, 15(4–8), 1041–1046.

    Article  Google Scholar 

  54. Obraztsov, A. N., Zolotukhin, A. A., Ustinov, A. O., Volkov, A. P., Svirko, Y., & Jefimovs, K. (2003). DC discharge plasma studies for nanostructured carbon CVD. Diamond and Related Materials, 12(3–7), 917–920.

    Article  Google Scholar 

  55. Jiang, N., Wang, H. X., Zhang, H., Sasaoka, H., & Nishimura, K. (2010). Characterization and surface modification of carbon nanowalls. Journal of Materials Chemistry, 20(24), 5070–5073.

    Article  Google Scholar 

  56. Krivchenko, V. A., Dvorkin, V. V., Dzbanovsky, N. N., Timofeyev, M. A., Stepanov, A. S., Rakhimov, A. T., et al. (2012). Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon, 50(4), 1477–1487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Bo, Z., Lu, G. (2015). PECVD Synthesis of Vertically-Oriented Graphene: Mechanism and Plasma Sources. In: Vertically-Oriented Graphene. Springer, Cham. https://doi.org/10.1007/978-3-319-15302-5_3

Download citation

Publish with us

Policies and ethics