Skip to main content

The Properties of Vertically-Oriented Graphene

  • Chapter
  • First Online:
Book cover Vertically-Oriented Graphene

Abstract

The unique properties of vertically-oriented graphene (VG) are discussed in this chapter. VG is intrinsically graphene, but it also possesses unique structural features, i.e., being arranged perpendicularly to the substrate surface. Therefore, VG possesses not only the properties of graphene but also some unique characteristics induced by its oriented arrangement. We start this chapter with a brief introduction of some general properties of graphene, which is deemed reasonable and necessary before we elaborate on the uniqueness of VG. To illustrate the attractive characteristics of VG, we compare VG with planar (or horizontal) graphene structures and emphasize the benefits that can be brought about due to VG’s vertical orientation. The unique properties of VG are summarized at the end of this chapter. Understanding of the VG’s uniqueness is critical to appreciating why VG has attracted so much interest and is also an essential step toward tailoring VG properties for various applications.

Part of this chapter was adapted from our review article “Emerging Energy and Environmental Applications of Vertically-Oriented Graphenes,” Chemical Society Reviews, 2015 (DOI: 10.1039/C4CS00352G)—Reproduced by permission of The Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Article  Google Scholar 

  2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200.

    Article  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature, 438(7065), 201–204.

    Article  Google Scholar 

  4. Nobelprize.org. The Nobel Prize in Physics 2010. Nobel Media AB 2014; Available from: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/.

  5. Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From conception to realization: An historial account of graphene and some perspectives for its future. Angewandte Chemie-International Edition, 49(49), 9336–9344.

    Article  Google Scholar 

  6. Wallace, P. R. (1947). The band theory of graphite. Physical Review, 71(9), 622–634.

    Article  Google Scholar 

  7. Boehm, H. P., Setton, R., & Stumpp, E. (1986). Nomenclature and terminology of graphite-intercalation compounds. Carbon, 24(2), 241–245.

    Article  Google Scholar 

  8. Boehm, H. P., Setton, R., & Stumpp, E. (1994). Nomenclature and terminology of graphite-intercalation compounds (Iupac recommendations 1994). Pure and Applied Chemistry, 66(9), 1893–1901.

    Article  Google Scholar 

  9. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 100(1), 016602.

    Article  Google Scholar 

  10. Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3(4), 206–209.

    Article  Google Scholar 

  11. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907.

    Article  Google Scholar 

  12. Lee, C., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388.

    Article  Google Scholar 

  13. Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502.

    Article  Google Scholar 

  14. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., et al. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308–1308.

    Article  Google Scholar 

  15. Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., Ponomarenko, L. A., et al. (2011). Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11(6), 2396–2399.

    Article  Google Scholar 

  16. Avouris, P. (2010). Graphene: Electronic and photonic properties and devices. Nano Letters, 10(11), 4285–4294.

    Article  Google Scholar 

  17. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., et al. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9–10), 351–355.

    Article  Google Scholar 

  18. Hwang, E. H., Adam, S., & Sarma, S. D. (2007). Carrier transport in two-dimensional graphene layers. Physical Review Letters, 98(18), 186806.

    Article  Google Scholar 

  19. Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes–the route toward applications. Science, 297(5582), 787–792.

    Article  Google Scholar 

  20. Bo, Z., Mao, S., Han, Z. J., Cen, K., Chen, J., & Ostrikov, K. (2015). Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, doi: 10.1039/C4CS00352G.

  21. Wu, Y. H., Qiao, P. W., Chong, T. C., & Shen, Z. X. (2002). Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Advanced Materials, 14(1), 64–67.

    Article  Google Scholar 

  22. Seo, D. H., Kumar, S., & Ostrikov, K. (2011). Control of morphology and electrical properties of self-organized graphenes in a plasma. Carbon, 49(13), 4331–4339.

    Article  Google Scholar 

  23. Bo, Z., Zhu, W. G., Ma, W., Wen, Z. H., Shuai, X. R., Chen, J. H., et al. (2013). Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Advanced Materials, 25(40), 5799–5806.

    Article  Google Scholar 

  24. Wang, J. J., Zhu, M. Y., Outlaw, R. A., Zhao, X., Manos, D. M., Holloway, B. C., & Mammana, V. P. (2004). Free-standing subnanometer graphite sheets. Applied Physics Letters, 85(7), 1265–1267.

    Article  Google Scholar 

  25. Hiramatsu, M., Shiji, K., Amano, H., & Hori, M. (2004). Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 84(23), 4708–4710.

    Article  Google Scholar 

  26. Bo, Z., Yu, K., Lu, G., Wang, P., Mao, S., & Chen, J. (2011). Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 49(6), 1849–1858.

    Article  Google Scholar 

  27. Miller, J. R., Outlaw, R. A., & Holloway, B. C. (2010). Graphene double-layer capacitor with AC line-filtering performance. Science, 329(5999), 1637–1639.

    Article  Google Scholar 

  28. Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D. A., Rummeli, M. H., et al. (2014). Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon, 72, 372–380.

    Article  Google Scholar 

  29. Bo, Z., Yang, Y., Chen, J., Yu, K., Yan, J., & Cen, K. (2013). Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 5(12), 5180–5204.

    Article  Google Scholar 

  30. Zhao, J., Shaygan, M., Eckert, J., Meyyappan, M., & Rummeli, M. H. (2014). A growth mechanism for free-standing vertical graphene. Nano Letters, 14(6), 3064–3071.

    Article  Google Scholar 

  31. Yuan, Q. H., Hu, H., Gao, J. F., Ding, F., Liu, Z. F., & Yakobson, B. I. (2011). Upright standing graphene formation on substrates. Journal of the American Chemical Society, 133(40), 16072–16079.

    Article  Google Scholar 

  32. Bo, Z., Yu, K., Lu, G., Cui, S., Mao, S., & Chen, J. (2011). Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: Lower power consumption and minimized ozone emission. Energy & Environmental Science, 4(7), 2525–2528.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Bo, Z., Lu, G. (2015). The Properties of Vertically-Oriented Graphene. In: Vertically-Oriented Graphene. Springer, Cham. https://doi.org/10.1007/978-3-319-15302-5_2

Download citation

Publish with us

Policies and ethics