Skip to main content

Detonation Waves Caused by Chemical Reactions or by Melt-coolant Interactions

  • Chapter
Book cover Multiphase Flow Dynamics 1
  • 2421 Accesses

Abstract

Analyzing a fascinating physical phenomenon such as the melt-water detonation in this chapter, we will give an interesting application of the theory of multi-phase flows - namely the analysis of the detonation wave propagation during the interaction of molten materials with liquids such as that of iron with water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berthoud, G.: Heat transfer modeling during a thermal detonation, CEA/Grenoble Report no SMTH/LM2/99-37 (March 1999)

    Google Scholar 

  • Board, S.J., Hall, R.W., Hall, R.S.: Detonation of fuel coolant explosions. Nature 254, 319–321 (1975)

    Article  Google Scholar 

  • Chapman, D.L.: Philos. Mag. 47(5), 90 (1899)

    Article  MATH  Google Scholar 

  • Crussard, L.: Bull. De la Soc. De l’industrie Minérale St.-Etienne 6, 1–109 (1907)

    Google Scholar 

  • Fischer, M.: Zur Dynamik der Wellenausbreitung in den Zweiphasenströmungen unter Berücksichtigung von Verdichtungsstössen, Dissertation, TH Karlsruhe (1967)

    Google Scholar 

  • Frost, D.L., Lee, J.H.S., Ciccarelli: The use of Hugoniot analysis for the propagation of vapor explosion waves. Shock Waves, 99–110 (1991)

    Google Scholar 

  • Henry, R.E., Fauske, H.K.: Core melt progression and the attainment of a per-manently coolable state. In: Proc. of the ANS Topical Meeting on Reactor Safety Aspects of Fuel Behavior, San Valley, Idaho. American Nuclear Society (August 1981a)

    Google Scholar 

  • Henry, R.E., Fauske, H.K.: Required initial conditions for energetic steam explosions. J. Heat Transfer 19, 99–107 (1981b)

    Google Scholar 

  • Hugoniot, P.H.: Mémoire sur la propagation du mouvement dans les corps et spécia-lement dans les gazes parfaits. Journal de l’École Polytechnique (1887)

    Google Scholar 

  • Huhtiniemi, I., Magalon, D., Hohmann, H.: Results of recent KROTOS FCI tests: alum-na vs. corium melts, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan, May 19-21 (1997)

    Google Scholar 

  • Jouguet, E.J.: Mathématique, 347 (1905); p. 6 (1906); Mécanique des Explosifs. Doin O, Paris (1917)

    Google Scholar 

  • Kolev, N.I.: In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 1: Choice of the solution method. In: Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999a); Log. No. 316_1

    Google Scholar 

  • Kolev, N.I.: In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 2: Analysis. In: Proceedings of the ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999b); Log. No. 316_2

    Google Scholar 

  • Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: Proc. of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999c)

    Google Scholar 

  • Kolev, N.I.: Detonation waves in melt-coolant interaction, Part 1: Theory, EU Nr. INV-MFCI(99)-D038. Kerntechnik 65(5-6), 254–260 (2000)

    Google Scholar 

  • Kolev, N.I., Hulin, H.: Detonation waves in melt-coolant interaction, Part.2: Aplied analysis. In: MFCI Project, 6th progress meeting, CEA, Grenoble, June 23-24 (1999); EU Nr. INV-MFCI(99)-D038. Kerntechnik 66(1-2), 21-25 (2001)

    Google Scholar 

  • Landau, L., Lifshitz, E.M.: Hydrodynamics. Nauka i izkustwo, Sofia (1953) (in Bulgarian), translated from Russian: Theoretical physics: Continuum mechanics and hydrodynamics, Technikoistorizeskoy literatury, Moscu (1978)

    Google Scholar 

  • Laplace, P.S.M.: Sur la vitesse du son dans l’air at dan l’eau. Annales de Chimie et de Physique (1816)

    Google Scholar 

  • Park, G.C., Corradini, M.L.: Estimates of limits for fuel-coolant mixing. In: AIChE Proc. of the National Heat Transfer Conference, Minneapolis (July 1991)

    Google Scholar 

  • Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbances. Philosophical Transactions of the Royal Society (1870)

    Google Scholar 

  • Rayleigh, L.: Aerial plane waves of finite amplitude. Proc. of the Royal Society (September 15, 1910)

    Google Scholar 

  • Reymann, G.A.: Specific heat capacity and enthalpy. In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Robert, J.K., Rupley, Miller, J.A.: The CHEMKIN thermodynamic data base, SAND-87-8215, DE87 009358 (April 1987)

    Google Scholar 

  • Scott, E.F., Berthoud, G.J.: Multi-phase thermal detonation, Topics in two-phase heat transfer and flow. In: ASME Winter Annual Meeting, San Francisco, pp. 11–16 (1978)

    Google Scholar 

  • Shamoun, B.I., Corradini, M.L.: Analysis of supercritical vapor explosions using thermal detonation wave theory. In: Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-7), pp. 1634–1652 (1995)

    Google Scholar 

  • Shamoun, B.I., Corradini, M.L.: Analytical study of subcritical vapor explosions using thermal detonation wave theory. Nuclear Technology 115, 35–45 (1996)

    Google Scholar 

  • Taylor, G.I.: The condition necessary for discontinuous motion in gases. Proc. of the Royal Society (October 1910)

    Google Scholar 

  • Turnay, K.: Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe (Mai 1985)

    Google Scholar 

  • Wallis, G.B.: One-dimensional two-phase flow. McGraw-Hill, New York (1969)

    Google Scholar 

  • van Vijngaarden: Propagation of shock waves in bubble-liquid mixtures. In: Proc. of the Int. Symposium of Two Phase Systems Prog. Heat and Mass Transfer, vol. 6, pp. 637–649 (1971)

    Google Scholar 

  • Wood, B.: Textbook of sound, p. 327. Macmillan, New York (1930)

    MATH  Google Scholar 

  • Yuen, W.W., Theofanous, T.G.: On the existence of multi-phase thermal detonation. In: Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI). JAERI-Tokai Research Establishment, Japan, May 1921- (1997)

    Google Scholar 

  • Zeldovich, J.B.: To the theory of detonation propagation in gas systems. Journal of Experimental and Theoretical Physics 10(5), 542–568 (1940)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Ivanov Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolev, N.I. (2015). Detonation Waves Caused by Chemical Reactions or by Melt-coolant Interactions. In: Multiphase Flow Dynamics 1. Springer, Cham. https://doi.org/10.1007/978-3-319-15296-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15296-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15295-0

  • Online ISBN: 978-3-319-15296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics