Advertisement

Detonation Waves Caused by Chemical Reactions or by Melt-coolant Interactions

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

Analyzing a fascinating physical phenomenon such as the melt-water detonation in this chapter, we will give an interesting application of the theory of multi-phase flows - namely the analysis of the detonation wave propagation during the interaction of molten materials with liquids such as that of iron with water.

Keywords

Shock Wave Void Fraction Detonation Wave Uranium Dioxide Detonation Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthoud, G.: Heat transfer modeling during a thermal detonation, CEA/Grenoble Report no SMTH/LM2/99-37 (March 1999)Google Scholar
  2. Board, S.J., Hall, R.W., Hall, R.S.: Detonation of fuel coolant explosions. Nature 254, 319–321 (1975)CrossRefGoogle Scholar
  3. Chapman, D.L.: Philos. Mag. 47(5), 90 (1899)zbMATHCrossRefGoogle Scholar
  4. Crussard, L.: Bull. De la Soc. De l’industrie Minérale St.-Etienne 6, 1–109 (1907)Google Scholar
  5. Fischer, M.: Zur Dynamik der Wellenausbreitung in den Zweiphasenströmungen unter Berücksichtigung von Verdichtungsstössen, Dissertation, TH Karlsruhe (1967)Google Scholar
  6. Frost, D.L., Lee, J.H.S., Ciccarelli: The use of Hugoniot analysis for the propagation of vapor explosion waves. Shock Waves, 99–110 (1991)Google Scholar
  7. Henry, R.E., Fauske, H.K.: Core melt progression and the attainment of a per-manently coolable state. In: Proc. of the ANS Topical Meeting on Reactor Safety Aspects of Fuel Behavior, San Valley, Idaho. American Nuclear Society (August 1981a)Google Scholar
  8. Henry, R.E., Fauske, H.K.: Required initial conditions for energetic steam explosions. J. Heat Transfer 19, 99–107 (1981b)Google Scholar
  9. Hugoniot, P.H.: Mémoire sur la propagation du mouvement dans les corps et spécia-lement dans les gazes parfaits. Journal de l’École Polytechnique (1887)Google Scholar
  10. Huhtiniemi, I., Magalon, D., Hohmann, H.: Results of recent KROTOS FCI tests: alum-na vs. corium melts, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan, May 19-21 (1997)Google Scholar
  11. Jouguet, E.J.: Mathématique, 347 (1905); p. 6 (1906); Mécanique des Explosifs. Doin O, Paris (1917)Google Scholar
  12. Kolev, N.I.: In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 1: Choice of the solution method. In: Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999a); Log. No. 316_1Google Scholar
  13. Kolev, N.I.: In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 2: Analysis. In: Proceedings of the ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999b); Log. No. 316_2Google Scholar
  14. Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: Proc. of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999c)Google Scholar
  15. Kolev, N.I.: Detonation waves in melt-coolant interaction, Part 1: Theory, EU Nr. INV-MFCI(99)-D038. Kerntechnik 65(5-6), 254–260 (2000)Google Scholar
  16. Kolev, N.I., Hulin, H.: Detonation waves in melt-coolant interaction, Part.2: Aplied analysis. In: MFCI Project, 6th progress meeting, CEA, Grenoble, June 23-24 (1999); EU Nr. INV-MFCI(99)-D038. Kerntechnik 66(1-2), 21-25 (2001)Google Scholar
  17. Landau, L., Lifshitz, E.M.: Hydrodynamics. Nauka i izkustwo, Sofia (1953) (in Bulgarian), translated from Russian: Theoretical physics: Continuum mechanics and hydrodynamics, Technikoistorizeskoy literatury, Moscu (1978) Google Scholar
  18. Laplace, P.S.M.: Sur la vitesse du son dans l’air at dan l’eau. Annales de Chimie et de Physique (1816)Google Scholar
  19. Park, G.C., Corradini, M.L.: Estimates of limits for fuel-coolant mixing. In: AIChE Proc. of the National Heat Transfer Conference, Minneapolis (July 1991)Google Scholar
  20. Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbances. Philosophical Transactions of the Royal Society (1870)Google Scholar
  21. Rayleigh, L.: Aerial plane waves of finite amplitude. Proc. of the Royal Society (September 15, 1910)Google Scholar
  22. Reymann, G.A.: Specific heat capacity and enthalpy. In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)Google Scholar
  23. Robert, J.K., Rupley, Miller, J.A.: The CHEMKIN thermodynamic data base, SAND-87-8215, DE87 009358 (April 1987)Google Scholar
  24. Scott, E.F., Berthoud, G.J.: Multi-phase thermal detonation, Topics in two-phase heat transfer and flow. In: ASME Winter Annual Meeting, San Francisco, pp. 11–16 (1978)Google Scholar
  25. Shamoun, B.I., Corradini, M.L.: Analysis of supercritical vapor explosions using thermal detonation wave theory. In: Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-7), pp. 1634–1652 (1995)Google Scholar
  26. Shamoun, B.I., Corradini, M.L.: Analytical study of subcritical vapor explosions using thermal detonation wave theory. Nuclear Technology 115, 35–45 (1996)Google Scholar
  27. Taylor, G.I.: The condition necessary for discontinuous motion in gases. Proc. of the Royal Society (October 1910)Google Scholar
  28. Turnay, K.: Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe (Mai 1985)Google Scholar
  29. Wallis, G.B.: One-dimensional two-phase flow. McGraw-Hill, New York (1969)Google Scholar
  30. van Vijngaarden: Propagation of shock waves in bubble-liquid mixtures. In: Proc. of the Int. Symposium of Two Phase Systems Prog. Heat and Mass Transfer, vol. 6, pp. 637–649 (1971)Google Scholar
  31. Wood, B.: Textbook of sound, p. 327. Macmillan, New York (1930)zbMATHGoogle Scholar
  32. Yuen, W.W., Theofanous, T.G.: On the existence of multi-phase thermal detonation. In: Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI). JAERI-Tokai Research Establishment, Japan, May 1921- (1997)Google Scholar
  33. Zeldovich, J.B.: To the theory of detonation propagation in gas systems. Journal of Experimental and Theoretical Physics 10(5), 542–568 (1940)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations