Advertisement

One-Dimensional Three-Fluid Flows

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

We call one dimensional the flow in pipes or in a pipe networks. We understand here a flow with cross section averaged flow characteristics with special wall boundary layer treatment, like pressure loss modeling, heat transfer modeling etc. The flow axis is of course arbitrarily oriented in space. Therefore this class of flows is one dimensional along a curvilinear pipe axis. A network consists of pipes and knots.

Keywords

Versus Versus Versus Multiphase Flow Versus Versus Versus Versus Slip Model Versus Versus Versus Versus Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albring, W.: Angewandte Strömungslehre. Verlag Theodor Steinkopf, Dresden (1970)Google Scholar
  2. Abedin, S., Takeuchi, K., Zoung, M.Y.: A method of computing hydraulic reaction force due to a fluid jet at steam line break. Nuclear Science and Engineering 92, 162–169 (1986)Google Scholar
  3. Donsky, B.: Complete pump characteristics and the effects of specific speeds an hydraulic transients. J. Basic Eng., 685–699 (December 1961)Google Scholar
  4. Fox, J.A.: Hydraulic analysis of unsteady flow in pipe networks. Macmillan Press Ltd., Basingstoke (1977)Google Scholar
  5. Gao, H., Gao, F., Zhao, X., Chen, J., Cao, X.: Transient flow analysis in reactor coolant pump systems. Nuclear Engineering and Design 241, 509–514 (2011)CrossRefGoogle Scholar
  6. Greiner, W.: Theoretische Physik, Band 1: Mechanik I. Verlag Harri Deutsch (1984)Google Scholar
  7. Henry, R.E., Fauske, H.K.: The two-phase critical flow of one-component mixtures in noz-zles orifices, and short tubes. Journal of Heat Transfer 2, 47–56 (1969)Google Scholar
  8. Kastner, W., Riedle, K., Seeberger, G.: Experimentelle Untersuchungen über das Verhalten von Hauptkühlmittelpumpen bei Kühlmittelverluststörfäallen, Brennstoff-Wärme-Kraft 35(6) (1983)Google Scholar
  9. Kastner, W., Seeberger, G.: Pump behavior and its impact an a loss-of-coolant accident in pressurized water reactor. Nuclear Technology 60, 268–277 (1983)Google Scholar
  10. Kelller, C.: Axialgebläse vom Standpunkt der Tragflügeltheorie. Gebr. Lehman & Co., Zürich (1934)Google Scholar
  11. Kennedy, W.G., et al.: Two-phase flow behavior of axial pumps. In: International Meeting on Thermal Nuclear Reactor Safety, August 29-September 2. Americana Congress Hotel Chicago, Illinois (1982)Google Scholar
  12. Kolev, N.I.: Zweiphasen - Zweikomponentenströmung (Luft- Wasserdampf- Wasser) zwischen den Sicherheitsräumen der KKW mit wassergekühlten Reaktoren bei Kühlmittelverlusthavarie, Dissertation TU – Dresden (1977)Google Scholar
  13. Kolev, N.I.: To the modeling of transient non equilibrium, non homogeneous systems. In: Proc. of the seminar “Thermal Physics 82 (Thermal Safety of VVER Type Nuclear Reactors)” held in Karlovy Vary, Czechoslovakia, pp. 129–147 (1982) (in Russian)Google Scholar
  14. Kolev, N.I.: Transiente Dreiphasen Dreikomponenten Strömung, Teil 2: Eindimensionales Schlupfmodell Vergleich Theorie-Experiment, KfK 3926, Kernforschungszentrum Karlsruhe (August 1985)Google Scholar
  15. Kolev, N.I.: Transiente Zweiphasenströmung. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  16. Kolev, N.I.: Transient three phase three component nonequilibrium nonhomogeneous flow. Nuclear Engineering and Design 91, 373–390 (1986)CrossRefGoogle Scholar
  17. Kolev, N.I.: IVA3-NW Components: relief valves, pumps, heat structures, Siemens Work Report No. KWU R232/93/e0050 (1993)Google Scholar
  18. Kolev, N.I.: IVA3 NW: Computer code for modeling of transient three phase flow in com-plicated 3D geometry connected with industrial networks. In: Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France, October 5-8 (1993)Google Scholar
  19. Lahey, R.T., Moody, F.J.: The thermal - hydraulics of a boiling water nuclear reactor. American Nuclear Society (1977); 2nd printing (1979)Google Scholar
  20. Lewis, R.I.: Turbomachinery performance analysis. Elsevier Science & Technology Books (May 1996) ISBN: 0340631910Google Scholar
  21. Magnus, K.: Schwingungen, BG Teubner (1986)Google Scholar
  22. Nigmatulin, B., Ivandeev, A.I.: Investigation of the hydrodynamic boiling crisis in two phase flow. High Temperature Thermal Physics 15(1), 129–136 (1977)Google Scholar
  23. Pohlenz, W.: Pumpen für Flüssigkeiten. VEB Verlag Technik, Berlin (1977)Google Scholar
  24. Pohlenz, W.: Grundlagen für Pumpen. VEB Verlag Technik, Berlin (1975)Google Scholar
  25. Pollak, R.: Druckwellenausbreitung des Primärkreislaufe (SNR 300) unter Berücksichtigung elastisch-plastischer Rohrwandverformung. In: Proc. Reaktortagung der KTG und des DATF, Duesseldorf (1976)Google Scholar
  26. Prandtl, L.: Führer durch die Strömungslehre, vol. 8. Braunschweig, Vieweg (1984)zbMATHGoogle Scholar
  27. Ransom, V.H., et al.: RELAP5/MOD2 Code Manual Vol 1: Code structure, system models and solution methods, NUREG/CR-4312 EGG-2396, rev.1, vol. 1, pp. 209–216 (1988)Google Scholar
  28. Roloff-Bock, I., Kolev, N.I.: IVA5 Computer Code: Relief and back pressing valve model, KWU Work Report No. NA-T/1998/E058, Project: IVA5-Development (July 1, 1998) Google Scholar
  29. Sass, F., Bouché, C., Leitner, A.: Dubbels Taschenbuch für den Maschinenbau. Springer, Heidelberg (1969)Google Scholar
  30. Suter, P.: Darstellung der Pumpencharakteristik für Druckstoßrechnungen. Sulzer Technical Review, 45–48 (1966)Google Scholar
  31. Tangren, R.F., Dodge, C.H., Seifert, H.S.: Compressibility effects in two-phase flow. Jour-nal of Applied Physics 20(7), 645–673 (1949)Google Scholar
  32. Wallis, G.B.: One-dimensional two-phase Flow. McGraw Hill, New York (1969)Google Scholar
  33. Wendt, J.F. (ed.): Computational fluid dynamics – an introduction. Springer, Berlin (1992)zbMATHGoogle Scholar
  34. Yano, T., Miyazaki, N., Isozaki, T.: Transient analysis of blow down thrust force under PWR LOCA. Nuclear Engineering and Design 75, 157–168 (1982)CrossRefGoogle Scholar
  35. Joukowsky, N.: Über den hydraulischen Stoss in Wasserleitungsröhren, Voss, Petersburg und Leipzig (April 24, 1898), pp. 1–72 (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations