Advertisement

Exergy of Multi-phase Multi-component Systems

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

Fluids at pressures and temperatures higher then the environment pressures and temperatures may perform technical work at the costs of their internal energy. Experience shows that not all available internal energy of fluids may be consumed for performing technical work but only part of it. The industrial revolution initiated with the invention of the steam machine started also the discussion on how much of the internal fluid energy may be transferred under given circumstances in technical work. The result of this discussion is well presented in the references and text books Baer (1996), Elsner (1974), Gouy (1889), Rant (1956-1964), Reynolds and Perkins (1977), Stephan and Mayinger (1998) and Zwicker (1976). We will shortly demonstrate the main ideas on a single-phase multi-component open system in which the spatial intermixing at any time is assumed to be perfect.

Keywords

Heat Pump Versus Versus Versus Versus Versus Versus Versus Versus Versus Technical Work Energy Conservation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baer, H.D.: Thermodynamik. Springer (1996)Google Scholar
  2. Carnot, N.L.S.: Réflexions sur la puissance motrice du feu et sur les machines propres à déveloper cette puissance, See also in “Oswalds Klassiker der exakten Wissenschaften”, W. Engelmann, Leipzig (1824)Google Scholar
  3. Elsner, N.: Grundlagen der Technischen Thermodynamik. Akademie Verlag, Berlin (1974)Google Scholar
  4. Gouy, M.: Sur L’énrgie Utilisable. Journal de Physique Teoretique et Appliquee, II Ser. 8, 501–518 (1889)Google Scholar
  5. Kolev, N.I.: The code IVA4: Modeling of mass conservation in multi-phase multi componet flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994)Google Scholar
  6. Kolev, N.I.: The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media. Kerntechnik 6(1), 1–39 (1995)Google Scholar
  7. Kolev, N.I.: Comments on the entropy concept. Kerntechnik 62(1), 67–70 (1997)Google Scholar
  8. Kolev, N.I.: On the variety of notation of the energy conservation principle for single phase flow. Kerntechnik 63(3), 145–156 (1998)Google Scholar
  9. Kolev, N.I.: Exergie von Mehrphasen-Mehrkomponenten-Systemen, Seminar “Verfahrenstechnik / Thermodynamik” Institut für Energie- und Verfahrenstechnik Universität Paderborn, reported at 12.02.2001 (2001)Google Scholar
  10. Rant, Z.: Exergie, ein neues Wort für “technische Arbeitsfähigkeit”. Forsch.-Ing. Wes. 22, 36–37 (1956); Die Thermodynamik von Heizprozessen. Strojniki Vertnik 8, 1–2 (1962) (Slowenisch). Die Heiztechnik und der zweite Hauptsatz der Thermodynamik. Gaswärme 12, 297–304 (1962); Siehe auch in: Exergie und Anergie. Wissenschaftliche Zeitschrift der TU Dresden 13, 1145–1149 (1964)Google Scholar
  11. Reynolds, W.C., Perkins, H.: Engineering Thermodynamics. McGraw-Hill Book Company, New York (1977)Google Scholar
  12. Stephan, K., Mayinger, F.: Techn. Thermodynamik, 15. Aufl., Bd. 1 (1998)Google Scholar
  13. Thomson, W.: On the economy of the heating and cooling of buildings by means of current of air. Proc. Phil. Soc. (Glasgow) 3, 268–272 (1852)Google Scholar
  14. Zwicker, A.: Wärmepumpen. In: Taschenbuch Maschinenbau, Bd. 2, pp. 858–864. VEB Verlag Technik, Berlin (1976)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations