Some Simple Applications of Mass and Energy Conservation

  • Nikolay Ivanov KolevEmail author


This Chapter contains some simple cases illustrating the use of the mass and the energy conservation for describing the thermodynamic state of multi-component single-phase systems. The results are useful themselves or for use as a benchmarks for testing the performance of computer codes.


Steam Injection Inert Component Hydrogen Combustion Closed Volume Initial Void Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlmä, F.: Gasdynamik der Verbrennung. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  2. Belles, F.E.: Detonability and chemical kinetics: Prediction of the limits of detonability of hydrogen. In: Seventh Symposium (international) on combustion, At London and Oxford, August 28-September 3, pp. 745–751 (1958)Google Scholar
  3. Bertelot, M., Vieille, P.: Compt. Rend. Acad. Sci. Paris 93, 18 (1881)Google Scholar
  4. Bröckerhoff, P., Kugeler, K., Reinecke, A.-E., Tragsdorf, I.M.: Untersuchungen zur weiteren Verbesserung der Methoden zur sicherheitstechnischen Bewertung der katalytischen Rekombinatoren von Wasserstoff in Sicherheitsbehältern von Kernkraftwerken bei schweren Störfällen, Institut für Sicherheitsforschung und Reaktortechnik (IRS-2), Forschungszentrum Jülich (April 4, 2002)Google Scholar
  5. Chapman, D.L.: Philos. Mag. 47(5), 90 (1899)zbMATHCrossRefGoogle Scholar
  6. Chase, M.W. (ed.): NIST-JANAF Thermochemical Tables, 4th edn. Part I, II. American Institute of Physics and American Chemical Society, Woodbury (1998)Google Scholar
  7. Cordfunke, E.H.P., Konings, R.J.M. (eds.): Thermochemical data for reactor materials and fusion products. Nord Holland, Amsterdam (1990)Google Scholar
  8. Cox, R.A. (ed.): Kinetics and mechanisms of elementary chemical processes of importance in combustion: Research within the frame of the CEC non-nuclear energy R&D program; Final report of the period 1.4, to 30.6, Engineering Science Division, Harwell Laboratory, Didcot/UK (1989)Google Scholar
  9. Crussard, L.: Bull. De la Soc. De l’industrie Minérale St.-Etienne 6, 1–109 (1907)Google Scholar
  10. de Saint Venant: Note ä joindre un mémoire sur la dynamique des fluides. Comptes Rendus 17, 1240–1244 (1843)Google Scholar
  11. Dorsey, N.E.: Properties of ordinary water-substance. Reihold (1951); Second Printing (1940)Google Scholar
  12. Gaydon, A., Wolfhard, H.: Flames, their structure, radiation, and temperature. Chapman and Hall, London (1979)Google Scholar
  13. Golden, G.H., Tokar, J.V.: Thermophysical properties of sodium, ANL-7323, Argonne National Laboratory, Argonne, IL (August 1967)Google Scholar
  14. Hame, W.: Aufbereitung der Stofffunktionen für Natrium; Einsatz in COMIX- Referenzversion KfK auf M7890 und Vektorrechner, PTF report delivered to KfK (1986)Google Scholar
  15. Ihara, S.: Approximation for the thermodynamic properties of high-temperature dissociated water vapor. Bulletin of the Electrotechnical Laboratory 41(4), 259–280 (1977)Google Scholar
  16. Ihara, S.: Direct thermal decomposition of water. In: Ohta, T. (ed.) Solar-Hydrogen Energy Systems, ch 4, pp. 58–79. Pergamon, Oxford (1979)Google Scholar
  17. Isserlin, A.S.: Osnovy zzhiganija gazovogo topliva. Nedra, Leningrad (1987)Google Scholar
  18. Jouguet, E.: J. Mathématique, p. 347 (1905); p. 6 (1906); Mécanique des Explosifs. Doin O, Paris (1917)Google Scholar
  19. Kesselman, P.M., JuI, B., Mogilevskij: Thermodynamical properties of thermally dissociated water steam for temperatures 1600-6000K and pressures 0.1-1000bar. High temperature physics 6(4) (1968)Google Scholar
  20. Kolarov, N.C.: Inorganic Chemistry, Sofia, Technika (1970) (in Bulgarian)Google Scholar
  21. Kuo, K.K.: Principles of Combustion. Wiley-Intersience Publication (1986)Google Scholar
  22. Laffitte, P.F.: Flames of high-speed detonation. Science of Petrolium, pp. 2995–3003. Oxford University Press, London (1938)Google Scholar
  23. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics, 2nd edn. Fluid Mechanics, vol. 6. Pergamon, Oxford (1987)zbMATHGoogle Scholar
  24. Lewis, B., Friauf, J.B.: Explosives in detonating gas mixtures. 1. Calculation of rates of explosions in mixtures of hydrogen and oxigen and the influence of rare gases. J. Amer. Chem. Soc. LII, 3905–3929 (1930)Google Scholar
  25. Lewis, B., von Elbe, G.: Combustion, flames and explosion of gases. Academic Press, Harcourt Brace Jovanovich (1987)Google Scholar
  26. Maas, U., Wanatz, J.: Ignition process in hydrogen-oxygen mixtures. Comb. Flame 74, 53–69 (1988)CrossRefGoogle Scholar
  27. Mallard, E., Le Chatelier, H.L.: Compt. Rend. Acad. Sci. Paris 93, 145 (1881)Google Scholar
  28. Moser, V.: Simulation der Explosion magerer Wasserstoff-Luft-Gemische in großskaligen Geometrien. PhD, Achener Beiträge zum Kraftahr- und Maschinenwesen 11 (February 6, 1997)Google Scholar
  29. Oswatitsch, K.: Gasdynamik. Springer, Vienna (1952)zbMATHCrossRefGoogle Scholar
  30. Robert, J.K., Rupley, Miller, J.A.: The CHEMKIN thermodynamic data base, SAND-87-8215, DE87 009358 (April 1987)Google Scholar
  31. Schmidt, E.: Thermodynamik, 3. Aufl., p. 272. Springer, Vienna (1945)Google Scholar
  32. Stone, J.P., Ewing, C.T., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-Temperature Properties of Sodium, NRL-6241, Naval Research Laboratory, Washington, DC (September 1965)Google Scholar
  33. Tangren, R.F., Dodge, C.H., Seifert, H.S.: Compressibility effects in two-phase flow. Journal of Applied Physics 20, 736 (1949)CrossRefGoogle Scholar
  34. Taylor, G.I.: Proc. Roy. Soc. London Ser. A 151, 429 (1935)Google Scholar
  35. Vargaftik, N.B.: Handbook of physical properties of liquids and gases: pure substances and mixtures. The English translation of the second edition. Hemisphere Publishing Corporation (1983)Google Scholar
  36. Vasic, A.Z.: High temperature properties and heat transfer phenomena for steam at temperatures up to 5000K. MS Thesis, Ottawa-Carleton Institute for Mechanical and Aeronautical Engineering, Ottawa, Ontario (1993)Google Scholar
  37. Wendlandt, R.: Z. für phys. Chemie 110, 637 (1924)Google Scholar
  38. Zeldovich, J.B.: To the theory of detonation propagation in gas systems. Journal of Experimental and Theoretical Physics 10(5), 542–568 (1940)Google Scholar
  39. Zwerev, I.N., Smirnov, N.N.: Gasodinamika gorenija. Izdatelstvo Moskovskogo Universiteta (1987)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations