Advertisement

First and Second Laws of the Thermodynamics Local

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

As in Chapters 1 and 2, from the large number of formulations of the conservation equations for multi-phase flows the local volume averaging as founded by Anderson and Jackson, Slattery, and Whitaker was selected to derive rigorously the energy conservation equations for multi-phase flows conditionally divided into three velocity fields. The heterogeneous porous-media formulation introduced by Gentry et al., commented by Hirt, and used by Sha, Chao and Soo, is then implanted into the formalism as a geometrical skeleton.

Keywords

Velocity Field Turbulent Kinetic Energy Energy Conservation Equation Mass Conservation Equation Specific Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albring, W.: Angewandte Strömungslehre. Verlag Theodor Steinkopf, Dresden (1970)Google Scholar
  2. Bird, B.R., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley & Sons, New York (1960)Google Scholar
  3. Bohl, W.R., et al.: Multiphase flow in the advanced fluid dynamics model. In: ANS Proc. 1988 Nat. Heat Transfer Conf., HTC, Houston, Texas, July 24-27, vol. 3, pp. 61–70 (1988)Google Scholar
  4. Boussinesq, J.: Essai sur la théorie des eaux courantes, Mem. Acad. Sci. Inst. Fr. 23(1), 252–260 (1877)Google Scholar
  5. Chandesris, M., Serre, G., Sagaut: A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. In: 4th Int. Conf. on Computational Heat and Mass Transfer, Paris (2005)Google Scholar
  6. Fick, A.: Über Diffusion. Ann. der Physik 94, 59 (1855)CrossRefGoogle Scholar
  7. Gibbs, W.J.: Thermodynamische Studien. Verlag von Wilhelm Engelmann, Leipzig (1892)zbMATHGoogle Scholar
  8. Grigorieva, V.A., Zorina, V.M. (eds.): Handbook of thermal engineering, thermal engineering experiment, 2nd edn., Moskva, Atomisdat, vol. 2 (1988) (in Russian)Google Scholar
  9. Hammond, G.P.: Turbulent Prandtl number within a near-wall flow. AIAA Journal 23(11), 1668–1669 (1985)MathSciNetCrossRefGoogle Scholar
  10. Kelly, J.M., Kohrt, R.J.: COBRA-TF: Flow blockage heat transfer program. In: Proc. Eleventh Water Reactor Safety Research Information Meeting, Gaithersbury - Maryland, NUREG/CP-0048, October 24-28, vol. 1, pp. 209–232 (1983)Google Scholar
  11. Kolev, N.I.: Transiente Drephasen Dreikomponenten Stroemung, Teil 1: Formulierung des Differentialgleichungssystems, KfK 3910 (March 1985)Google Scholar
  12. Kolev, N.I.: Transient three-dimensional three-phase three-component non equilibrium flow in porous bodies described by three-velocity fields. Kernenergie 29(10), 383–392 (1986)Google Scholar
  13. Kolev, N.I.: Transiente Dreiphasen Dreikomponenten Stroemung, Part 3: 3D-Dreifluid-Diffusionsmodell, KfK 4080 (1986)Google Scholar
  14. Kolev, N.I.: A Three Field-Diffusion Model of Three-Phase, Three-Component Flow for the Transient 3D-Computer Code IVA2/01. Nuclear Technology 78, 95–131 (1987)Google Scholar
  15. Kolev, N.I.: A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: Conservation and state equations, numerics. KfK 4948 Kernforschungszentrum Karlsruhe (September 1991)Google Scholar
  16. Kolev, N.I.: IVA3: A transient 3D three-phase, three-component flow analyzer. In: Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21-25, pp. 171–180 (1991)Google Scholar
  17. Kolev, N.I.: Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasserkühlerrohrbruch, Projekt KKW Emsland, Siemens KWU Report R232/93/0002 (1993a)Google Scholar
  18. Kolev, N.I.: IVA3-NW A three phase flow network analyzer. Input description, Siemens KWU Report R232/93/E0041 (1993b)Google Scholar
  19. Kolev, N.I.: IVA3-NW components: Relief valves, pumps, heat structures, Siemens KWU Report R232/93/E0050 (1993c)Google Scholar
  20. Kolev, N.I.: The code IVA3 for modelling of transient three-phase flows in complicated 3D geometry. Kerntechnik 58(3), 147–156 (1993d)Google Scholar
  21. Kolev, N.I.: IVA3 NW: Computer code for modelling of transient three phase flow in complicated 3D geometry connected with industrial networks. In: Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France, October 5-8 (1993e)Google Scholar
  22. Kolev, N.I.: IVA4: Modelling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Siemens KWU Report NA-M/94/E029, July 5, 1994 also in Kerntechnik 59(4-5), 226–237 (1994)Google Scholar
  23. Kolev, N.I.: IVA4: Modelling of momentum conservation in multi-phase flows in heterogeneous porous media. Siemens KWU Report NA-M/94/E030, July 5, also in Kerntechnik 59(6), 249–258 (1994)Google Scholar
  24. Kolev, N.I.: The influence of the mutual bubble interaction on the bubble departure diameter. Experimental Thermal and Fluid Science 8, 167–174 (1994)CrossRefGoogle Scholar
  25. Kolev, N.I.: Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? In: 7th FARO Experts Group Meeting Ispra, October 15-16 (1996)Google Scholar
  26. Kolev, N.I.: Derivatives for the equation of state of multi-component mixtures for universal multi-component flow models. Nuclear Science and Engineering 108, 74–87 (1991)Google Scholar
  27. Kolev, N.I.: The code IVA4: Second law of thermodynamics for multi-phase multi-component flows in heterogeneous media. Kerntechnik 60(1), 1–39 (1995)Google Scholar
  28. Kolev, N.I.: Comments on the entropy concept. Kerntechnik 62(1), 67–70 (1997a)Google Scholar
  29. Kolev, N.I.: Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? In: Proceedings of OECD/CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements, Annapolis, Md, U.S.A., November 5-8 (1997b); 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2-6 (1997); ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22-26 (1997), Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan, May 22-24 (1997)Google Scholar
  30. Kolev, N.I.: On the variety of notation of the energy conservation principle for single phase flow. Kerntechnik 63(3), 145–156 (1998)Google Scholar
  31. Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999); Log. Nr. 315Google Scholar
  32. Liles, D.R., et al.: TRAC-P1: An advanced best estimate computer program for PWR LOCA analysis. I. Methods, Models, User Information and Programming Details, NUREG/CR-0063, LA-7279-MS, vol. 1 (June 1978)Google Scholar
  33. Liles, D.R., et al.: TRAC-FD2 An advanced best-estimate computer program for pres-surized water reactor loss-of-coolant accident analysis. NUREG/CR-2054, LA-8709 MS (April 1981)Google Scholar
  34. Oswatitsch, K.: Gasdynamik, Berlin, Göttingen, Heidelberg (1952)Google Scholar
  35. Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids, 3rd edn. McGraw-Hill Book Company, New York (1982)Google Scholar
  36. Sha, T., Chao, B.T., Soo, S.L.: Porous media formulation for multi phase flow with heat transfer. Nuclear Engineering and Design 82, 93–106 (1984)CrossRefGoogle Scholar
  37. Shapiro, A.H.: The dynamics and thermodynamics of compressible fluid flow. The Roland Press Company, New York (1953)Google Scholar
  38. Solbrig, C.W., Hocever, C.H., Huges, E.D.: A model for a heterogene-ous two-phase unequal temperature fluid. In: 17th National Heat Transfer Conference, Salt Lake Sity, Utah, August 14-17, pp. 139–151 (1977)Google Scholar
  39. Stefan, J.: Versuche über die Verdampfung. Wiener Berichte 68, 385 (1874)Google Scholar
  40. Taylor, G.I.: Proc. Roy. Soc. A 151, 429 (1935)Google Scholar
  41. Thurgood, M.J., et al.: COBRA/TRAC - A thermal hydraulic code for transient analysis of nuclear reactor vessels and primary coolant systems. NUREG/CR-346, vol. 1-5 (1983)Google Scholar
  42. Zierep, J.: Einige moderne Aspekte der Stroemungsmechanik. Zeitschrift fuer Flugwissenschaften und Weltraumforschung 7(6), 357–361 (1983)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations