On the Variety of Notations of the Energy Conservation for Single-Phase Flow

  • Nikolay Ivanov KolevEmail author


The computational fluid mechanics produces a large number of publications in which the mathematical notation of the basic principles and of the thermodynamic relationships is often taken by the authors for self understanding and is rarely explained in detail. One of the prominent examples is the different notation of the energy conservation for flows in the literature. The vector of the dependent variables frequently used may contain either specific energy, or specific enthalpy, or specific entropy, or temperature etc. among other variables. If doing the transformation from one vector into the other correctly the obtained systems of partial differential equation must be completely equivalent to each other. Nevertheless, sometimes the message of the different notations of the first principle is misunderstood by interpreting one of them as “wrong” and other as right. That is why recalling the basics once more seems to be of practical use in order to avoid misunderstandings.


Energy Conservation Control Volume Canonical Form Energy Conservation Equation Mass Conservation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boltzman, L.: Wissenschaftliche Abhandlungen. Bd. 1. Leipzig (1909)Google Scholar
  2. Capozza, A.: Transid: A computer program for the study of hydraulic transient involving cavitation and waterhammer. Energia Nucleare (2), 105–122 (1986)Google Scholar
  3. Chen, W.L., Thompson, D.H., Shin, Y.W.: NAHAMMER, a computer program for analysis of one-dimensional pressure-pulse propagation in a closed fluid system. Argonne National Laboratory (May 1974)Google Scholar
  4. Clausius, R.: Ann. Phys. 125, 390 (1854); Phil. Mag. 35, 419 (1868); Die mechanische Wärmetheorie, Bonn, vol. 1 (1875)Google Scholar
  5. D’Alembert (1743) Traité de dynamiqueGoogle Scholar
  6. Elsner, N.: Grundlagen der Technischen Thermodynamik, p. 86. Akademie Verlag, Berlin (1974)Google Scholar
  7. Ferch, R.L.: Method of characteristics solutions for non-equilibrium transient flow-boiling. International Journal of Multiphase Flow 5, 265–279 (1979)zbMATHCrossRefGoogle Scholar
  8. George, J.K., Doshi, J.B.: Analysis of a core disruptive accident in a liquid-metal-cooled fast breeder reactor using the near-characteristic method. Nuclear Technology 108, 338–349 (1994)Google Scholar
  9. Grillenberger, T.: Druckwellenausbreitungsvorgänge in Rohrleitungen - experimentelle und rechnerische Ergebnisse der HDR-Armaturenversuche. Atomenergie Kerntechnik Bd. 37, 65–69 (1981)Google Scholar
  10. Gibbs, J.W.: Thermodynamics. Statistical mechanics (1878)Google Scholar
  11. Gibbs, J.W.: Thermodynamische Studien, p. 76. Verlag von Wilchelm Engelmann, Leipzig (1992); translated in German by W. Ostwald in 1892Google Scholar
  12. Hancox, W.T., Banerjee, S.: Numerical standards for flow-boiling analyses. Nuclear Science and Engineering 64, 106–123 (1977)Google Scholar
  13. Hancox, W.T., Mathers, W.G., Kawa, D.: Analysis of transient flow boiling: Application of the method of characteristics. AIChE Symposium Series 74(174), 175–183 (1978)Google Scholar
  14. Henshaw, W.D.: A scheme for numerical solutions of hyperbolic systems of conservation laws. Journal of Computational Physics 68, 25–47 (1987)zbMATHCrossRefGoogle Scholar
  15. Hoffmann, K.A., Chang, S.T.: Computational fluid dynamics, vol. 2. A Publication of Engineering Education System, Wichita (2000)Google Scholar
  16. Hu, S.S., Schiesser, W.E.: An adaptive grid method in the numerical method of lines. In: Advances in Computer Methods for Partial Differential Equations, pp. 305–311 (1981)Google Scholar
  17. Joukowsky, N.: Ueber den hydraulischen Stoss in Wasserleitungesröhren, Voss, Petersburg und Leipzig, 1990, pp. 1–72 (April 24, 1898)Google Scholar
  18. Kaizerman, S., Wacholder, E., Elias, E.: A drift-flux model flow-regime map of two-phase flows for thermal-hydraulic calculations, Nuclear Science and Engineering. Technical Notes 84(2), 166–173 (1983)Google Scholar
  19. Katkovskiy, E.A., Poletaev, G.H.: Wave processes in hydraulic systems, Preprint of th Kurchatov Institut, IAE-2491, Moskva (1975) (in Russian)Google Scholar
  20. Köberlein, K.: Die verzögerte Einstellung des thermodynamischen Gleichgewichts als Grundlage eines Rechenmodells für die Druckwellenausbreitung in der Zweiphasen-Strömung von Wasser, Laboratorium für Reaktorregelung und Anlagensicherung Garching (April 1972)Google Scholar
  21. Kolev, N.I.: Derivatives for the state equations of multi-component mixtures for universal multi-component flow models. Nuclear Science and Engineering 108, 74–87 (1990)Google Scholar
  22. Kolev, N.I.: The code IVA4: Modeling of mass conservation in multi-phase multi component flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994a)Google Scholar
  23. Kolev, N.I.: The code IVA4: Modeling of momentum conservation in multi-phase multi component flows in heterogeneous porous media. Kerntechnik (6), 249–258 (1994b)Google Scholar
  24. Kolev, N.I.: The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media. Kerntechnik 60(1), 1–39 (1995)Google Scholar
  25. Kolev NI Three Fluid Modeling With Dynamic Fragmentation and Coalescence Fiction or Daily practice? 7th FARO Experts Group Meeting Ispra, October 15-16 (1996); Proceedings of OECD/CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements, Annapolis, Md, U.S.A., November 5-8 (1996); 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2-6 (1997); ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22-26 (1997), Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22-24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan Google Scholar
  26. Kolev, N.I.: Comments on the entropy concept. Kerntechnik 62(1), 67–70 (1997a)Google Scholar
  27. Kolev, N.I.: An pretest computation of FARO-FAT L27 experiment with IVA5 computer code. In: 8th FARO Expert Group Meeting, December 9-10, JRC-Ispra (1997b)Google Scholar
  28. Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999); Log. Nr. 315Google Scholar
  29. Kolev, N.P., Carver, M.B.: Pseudo-characteristic method of lines solution of the two-phase conservation equations. In CSNI Specialist Meeting on Transient Two-Phase Flow, March 23-25 (1981)Google Scholar
  30. McDonald, B.H., Hancox, W.T., Mathers, W.G.: Numerical solution of the transient flow-boiling equations, OECD/CSNI Specialists Meeting on Transient Two-Phase Flow (June 1978)Google Scholar
  31. Namatame, K., Kobayashi, K.: Digital computer code depco-multi for calculating the subcooled decompression in PWR LOCA, Japan Atomic Energy Research Institute (February 1974)Google Scholar
  32. Oertel, H.: Stossrohre. Springer Verlag, Wien-New York (1966)Google Scholar
  33. Oswatitsch, K.: Gasdynamik. Springer, Wien (1952)zbMATHCrossRefGoogle Scholar
  34. Newton, I.: Matematische Prinzipien der Naturlehre, Berlin (1872)Google Scholar
  35. Plank, M.: Vorlesungen über Thermodynamic. 11. Aufl., s. 91. Verlag Walter de Gruyter & Co., Berlin (1964)Google Scholar
  36. Reynolds, W.C., Perkins, H.C.: Engineering Thermodynamics, 2nd edn., p. 266. McGraw-Hill (1977)Google Scholar
  37. Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 8, 43–65 (1858)Google Scholar
  38. Santalo, J.M.G., Lahey Jr., R.T.: An exact solution for flow transients in two-phase systems by the method of characteristics, pp. 42–49 (1972)Google Scholar
  39. Shin, Y.W., Chen, W.L.: Numerical fluid-hammer analysis by the method of characteristics in complex piping networks. Nuclear Engineering and Design 33, 357–369 (1975)CrossRefGoogle Scholar
  40. Shin, Y.W., Valentin, R.A.: Two dimensional fluid hammer analysis by the method of characteristics in complex piping networks. Nuclear Engineering and Design 33, 357–369 (1974)CrossRefGoogle Scholar
  41. Stokes, G.G.: On the theories of the internal friction of fluids in motion and the equilibrium and motion of elastic solids. Trans. Cambr. Phil. Soc. 8, 287–305 (1845)Google Scholar
  42. Thorley, A.R.D., Tiley, C.H.: Unsteady and transient flow of compressible fluids in pipelines – a review of theoretical and some experimental studies. Heat and Fluid Flow 8(1), 3–16 (1987)CrossRefGoogle Scholar
  43. Wang, Y.Z., Johnson, S.H.: Application of the pseudo-characteristic numerical method of lines. In: 10th IMACS World Congress on System Simulation and Scientific Computation, pp. 146–147 (1981)Google Scholar
  44. Weisman, J., Tenter, A.: Application of the method of characteristics to solution of nuclear engineering problems. Nuclear Science and Engineering 78, 1–29 (1981)Google Scholar
  45. Zucrow, J.M., Hoffman, J.D.: Gas Dynamics, vol. II. Robert E Krieger Publ. Company, inc., Malabar (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations