Advertisement

Derivatives for the Equations of State

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

Numerical modeling of complicated physical phenomena such as multicomponent multi-phase flows is a powerful tool supplementing experiments and enabling optimum design of complicated technical facilities. The wide range of computer codes developed over the past 30 years for the description of multidimensional single-, two- and multiphase flows inevitably leads to the step of developing a universal flow analyzer. Such a computer code should model transient and steady-state three-dimensional flows in a complicated geometry with arbitrary internals. The flow should be described by multi-velocity fields, each of them consisting of an arbitrary number of chemical components.

Keywords

Perfect Fluid Saturation Line Specific Internal Energy Miscible Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chase, M.W. (ed.): NIST-JANAF Thermochemical Tables, 4th edn., Part I, II. American Institute of Physics and American Chemical Society, Woodbury (1998)Google Scholar
  2. Chawla, T.C., et al.: Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Engineering and Design 67, 57–74 (1981)CrossRefGoogle Scholar
  3. Cordfunke, E.H.P., Konings, R.J.M. (eds.): Thermo-chemical data for reactor materials and fission products. North-Holland, Amsterdam (1990)Google Scholar
  4. Elizer, S., Ghatak, A., Hora, H.: Fundamental of equation of state. World Scientific, New Jersey (2002)CrossRefGoogle Scholar
  5. Elsner, N.: Grundlagen der Technischen Thermodynamik, vol. 2. Berichtete Auflage, Akademie-Verlag, Berlin (1974)Google Scholar
  6. Fink, J.K., Ghasanov, M.G., Leibowitz, L.: Properties for reactor safety analysis, ANLCEN-RSD-82-2 (May 1982)Google Scholar
  7. Fischer, E.A.: Kernforschungszentrum Karlsruhe GmbH, unpublished report (1990)Google Scholar
  8. Garland, W.J., Hand, B.J.: Simple functions for the fast approximation of light water thermodynamic properties. Nuclear Engineering and Design 113, 21–34 (1989)CrossRefGoogle Scholar
  9. Hill, P.G., Miyagawa, K.: A tabular Taylor series expansion method for fast calculation of steam properties. Transaction of ASME, Journal of Engineering for Gas Turbines and Power 119, 485–491 (1997)CrossRefGoogle Scholar
  10. Irvine, T.F., Liley, P.E.: Steam and gas tables with computer equations. Academic Press, New York (1984)Google Scholar
  11. Issa, R.I.: Numerical methods for two- and three- dimensional recirculating flows. In: Essers, J.A. (ed.) Comp. Methods for Turbulent Transonic and Viscous Flow, p. 183. Hemisphere, Springer, Washington, Heidelberg (1983)Google Scholar
  12. Kestin, J.: A course in thermodynamics, vol. 1. Hemisphere, Washington (1979)Google Scholar
  13. Kolev, N.I.: Transient three phase three component non-equilibrium non-homogeneous flow. Nuclear Engineering and Design 91, 373–390 (1986a)CrossRefGoogle Scholar
  14. Kolev, N.I.: Transiente Zweiphasenstromung. Springer, Heidelberg (1986b)CrossRefGoogle Scholar
  15. Kolev, N.I.: A three-field model of transient 3D multi-phase three-component flow for the computer code IVA3, Part 2: Models for interfacial transport phenomena. Code validation, Kernforschungszentrum Karlsruhe, KfK 4949 (September 1991a)Google Scholar
  16. Kolev, N.I.: A three-field model of transient 3D multi-phase three-component flow for the computer code IVA3, Part 1: Theoretical basics: Conservation and state equations, numerics. Kernforschungszentrum Karlsruhe, KfK 4948 (September 1991b)Google Scholar
  17. Kolev, N.I.: IVA3: Computer code for modeling of transient three dimensional three phase flow in complicated geometry. Program documentation: Input Description, KfK 4950, Kernforschungszentrum Karlsruhe (September 1991c)Google Scholar
  18. Kolev, N.I.: Derivatives for equations of state of multi-component mixtures for universal multi-component flow models. Nuclear Science and Engineering 108(1), 74–87 (1991d)Google Scholar
  19. Kolev, N.I.: The code IVA4: Modeling of mass conservation in multi-phase multicomponent flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994a)Google Scholar
  20. Kolev, N.I.: The code IVA4: Modeling of momentum conservation in multi-phase multicomponent flows in heterogeneous porous media. Kerntechnik 59(6), 249–258 (1994b)MathSciNetGoogle Scholar
  21. Kolev, N.I.: The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media. Kerntechnik 60(1), 1–39 (1995)Google Scholar
  22. Kolev, N.I.: Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? In: 7th FARO Experts Group Meeting Ispra, October 15-16 (1996); Proceedings of OECD/CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements, Annapolis, MD, U.S.A., November 5-8 (1996); 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2-6 (1997); ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA, June 22-26 (1997); Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan, May 22-24 (1997)Google Scholar
  23. Kolev, N.I.: On the variety of notation of the energy conservation principle for single phase flow. Kerntechnik 63(3), 145–156 (1998)Google Scholar
  24. Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999)Google Scholar
  25. Kolev, N.I.: Multi-Phase Flow Dynamics. In: Fundamentals + CD, vol. 1. Springer, Berlin (2002) ISBN 3-540-42984-0Google Scholar
  26. Liles, D.R., et al.: TRAC-PD2 An advanced best-estimate computer program for pressurized water reactor loss-of-coolant accident analysis, NUREG/CR-2054, LA-7709-MS (1981)Google Scholar
  27. McCahan, S., Shepherd, J.E.: A thermodynamic model for aluminum-water interaction. In: Proc. of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127 (January 1993)Google Scholar
  28. Meyer, J.: Negative pressure in liquids. Abh. Dt. Buns. Ges. 6, 1 (1911)Google Scholar
  29. Meyer, J.: Zur Kenntnis des negativen Druckes in Flüssigkeiten. Verlag von Wilchelm Knapp, Halle a. S (1911)Google Scholar
  30. Meyer-Pittroff, R., Vesper, H., Grigul, U.: Einige Umkehrfunktionen und Näherungsgleichungen zur. In: 1967 IFC Formulation for Industrial Use” für Wasser und Wasserdampf, Brennst.-Wärme-Kraft, vol. 21(5), p. 239 (May 1967)Google Scholar
  31. Oelkers, E.H., et al.: Summary of the apparent standard partial molar Gibbs free energies of formation of aqueous species, minerals, and gases at pressures 1 to 5000 bars and temperatures 25 to 1000°C. J. Phys. Chem. Ref. Data 24(4), 1401–1560 (1995)CrossRefGoogle Scholar
  32. Reid, R.C., Prausnitz, J.M., Scherwood, T.K.: The properties of gases and liquids, 3rd edn. McGraw-Hill Book Company, New York (1982)Google Scholar
  33. Rivkin, S.L., Alexandrov, A.A.: Thermodynamic properties of water and steam. Energia (1975) (in Russian)Google Scholar
  34. Rivkin, S.L., Kremnevskaya, E.A.: Equations of state of water and steam for computer calculations for process and equipment at power stations. Teploenergetika 24(3), 69–73 (1977) (in Russian)Google Scholar
  35. Sesternhenn, J., Müller, B., Thomann, H.: On the calculation problem in calculating compressible low mach number flows. Journal of Computational Physics 151, 579–615 (1999)Google Scholar
  36. Skripov, V.P., et al.: Thermophysical properties of liquids in meta-stable state. Atomisdat, Moscow (1980) (in Russian)Google Scholar
  37. Touloukian, Y.S., Makita, T.: Specific heat, non-metallic liquids and gases, vol. 6. IFC/Plenum, New York (1970)Google Scholar
  38. Vargaftik, N.B., Vonogradov, Y.K., Yargin, V.S.: Handbook of physical properties of liquid and gases, 3rd edn. Begell House, New York (1996)Google Scholar
  39. Wagner, W., et al.: The IAPS industrial formulation 1997 for the thermodynamic properties of water and steam, Transaction of ASME. Journal of Engineering for Gas Turbines and Power 122, 150–182 (2000); See also Wagner, W., Kruse, A.: Properties of water and steam. Springer, Heidelberg (1998)Google Scholar
  40. Wagner, W., Kruse, A.: Properties of water and steam. Springer, Heidelberg (1998)Google Scholar
  41. Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 3rd edn. Springer, Heidelberg (2001)zbMATHCrossRefGoogle Scholar
  42. Wilke, C.R.: J. Chem. Phys. 18 (1950)Google Scholar
  43. Worthington: Phil. Trans. Royal Soc. London 183, 355 (1892)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations