Advertisement

Conservation of Momentum

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

As in Chapter 1, from the large number of formulations of the conservation equations for multiphase flows, local volume averaging as founded by Anderson and Jackson, Slattery, andWhitaker was selected to derive rigorously the momentum equations for multiphase flows conditionally and divided into three velocity fields. The heterogeneous porous-media formulation introduced by Gentry et al., commented on by Hirt, and used by Sha, Chao, and Soo, is then implanted into the formalism as a geometrical skeleton. Beyond these concepts, I perform subsequent time averaging. This yields a working form that is applicable to a large variety of problems. All interfacial integrals are suitably transformed in order to enable practical application. Some minor simplifications are introduced in the finally obtained general equation and working equations for each of the three velocity fields are recommended for general use in multiphase fluid dynamic analysis.

Keywords

Versus Versus Versus Multiphase Flow Lift Force Versus Versus Versus Versus Bubbly Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albring, W.: Angewandte Strömungslehre. Theodor Steinkopff, Dresden (1970)Google Scholar
  2. Anderson, T.B., Jackson, R.: A fluid mechanical description of fluidized beds. Ind. Eng. Fundam. 6, 527 (1967)CrossRefGoogle Scholar
  3. Antal, S.P., Lahey Jr., R.T., Flaherty, J.E.: Analysis of phase distribution in a fully developed laminar bubbly two-phase flow. Int. J. Multiphase Flow 17(5), 635–652 (1991)zbMATHCrossRefGoogle Scholar
  4. Auton, R.T.: The lift force on a spherical body in rotating flow. J. Fluid Mechanics 183, 199–218 (1987)zbMATHCrossRefGoogle Scholar
  5. Barnea, D., Taitel, Y.: Interfacial and structural stability. Int. J. Multiphase Flow 20(suppl.), 387–414 (1994)zbMATHCrossRefGoogle Scholar
  6. Bataille, J., Lance, M., Marie, J.L.: Bubble turbulent shear flows. In: ASME Winter Annular Meeting, Dallas (November 1990)Google Scholar
  7. Bernemann, K., Steiff, A., Weinspach, P.M.: Zum Einfluss von längsangeströmten Rohrbündeln auf die großräumige Flüssigkeitsströmung in Blasensäulen. Chem. Ing. Tech. 63(1), 76–77 (1991)CrossRefGoogle Scholar
  8. Biberg, D.: An explicit approximation for the wetted angle in two-phase stratified pipe flow. The Canadian Journal of Chemical Engineering 77, 1221–1224 (1999)CrossRefGoogle Scholar
  9. Biesheuvel, A., van Wijngaarden, L.: Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mechanics 168, 301–318 (1984)CrossRefGoogle Scholar
  10. Biesheuvel, A., Spoelstra, S.: The added mass coefficient of a dispersion of spherical gas bubbles in liquid. Int. J. Multiphase Flow 15, 911–924 (1989)zbMATHCrossRefGoogle Scholar
  11. Bournaski, E.: Numerical simulation of unsteady multiphase pipeline flow with virtual mass effect. Int. J. Numer. Meth. Eng. 34, 727–740 (1992)zbMATHCrossRefGoogle Scholar
  12. Boussinesq, J.: Essai sur la théorie des eaux courantes. Mem. Pŕs. Acad. Sci. 23, 46 (1877)Google Scholar
  13. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  14. Brauner, N., Maron, D.M.: Stability analysis of stratified liquid–liquid flow. Int. J. Multiphase Flow 18(1), 103–121 (1992)zbMATHCrossRefGoogle Scholar
  15. Crowe, C.T., Pratt, D.T.: Analysis of the flow field in cyclone separators. Comp. Fluids 2, 249–260 (1974)zbMATHCrossRefGoogle Scholar
  16. Cook, T.L., Harlow, F.H.: VORT: A computer code for bubble two-phase flow. Los Alamos National Laboratory documents LA-10021-MS (1983)Google Scholar
  17. Cook, T.L., Harlow, F.H.: Virtual mass in multi-phase flow. Int. J. Multiphase Flow 10(6), 691–696 (1984)zbMATHCrossRefGoogle Scholar
  18. de Crecy, F.: Modeling of stratified two-phase flow in pipes, pumps and other devices. Int. J. Multiphase Flow 12(3), 307–323 (1986)zbMATHCrossRefGoogle Scholar
  19. Deich, M.E., Philipoff, G.A.: Gas dynamics of two phase flows. Energoisdat, Moskva (1981)Google Scholar
  20. Delhaye, J.M.: Basic equations for two-phase flow. In: Bergles, A.E., et al. (eds.) Two-Phase Flow and Heat Transfer in Power and Process Industries. Hemisphere Publishing Corporation, McGraw-Hill Book Company, New York (1981)Google Scholar
  21. Delhaye, J.M., Giot, M., Riethmuller, M.L.: Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Hemisphere Publishing Corporation, McGraw Hill Book Company, New York (1981)Google Scholar
  22. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge Univ. Press, Cambridge (1981)zbMATHGoogle Scholar
  23. Drew, D.A., Lahey Jr., R.T.: The virtual mass and lift force on a sphere in rotating and straining flow. Int. J. Multiphase Flow 13(1), 113–121 (1987)zbMATHCrossRefGoogle Scholar
  24. Erichhorn, R., Small, S.: Experiments on the lift and drag of spheres suspended in a Poiseuille flow. J. Fluid Mech. 20(3), 513 (1969)CrossRefGoogle Scholar
  25. Gray, W.G., Lee, P.C.Y.: On the theorems for local volume averaging of multi-phase system. Int. J. Multi-Phase Flow 3, 222–340 (1977)CrossRefGoogle Scholar
  26. Helmholtz, H.: Über diskuntinuirliche Flüssigkeitsbewegungen, Monatsberichte der Königlichen Akademie der Wissenschaften zu Berlin, pp. 215–228 (1868)Google Scholar
  27. Hetstrony, G.: Handbook of multi-phase systems. Hemisphere Publ. Corp., McGraw-Hill Book Company, Washington, New York (1982)Google Scholar
  28. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for dynamics of free boundaries. J. of Comp. Physics 39, 201–225 (1981)zbMATHCrossRefGoogle Scholar
  29. Ho, B.P., Leal, L.G.: Internal migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 78(2), 385 (1976)CrossRefGoogle Scholar
  30. Hwang, G.J., Schen, H.H.: Tensorial solid phase pressure from hydrodynamic interaction in fluid-solid flows. In: Proc. of the Fifth International Topical Meeting on Reactor Thermal Hydraulics, NURETH-5, Salt Lake City, UT, USA, September 21-24, vol. IV, pp. 966–971 (1992)Google Scholar
  31. Ishii, M.: Thermo-fluid dynamic theory of two-phase flow. Eyrolles, Paris (1975)zbMATHGoogle Scholar
  32. Ishii, M., Michima, K.: Two-fluid model and hydrodynamic constitutive relations. NSE 82, 107–126 (1984)Google Scholar
  33. Jeffrey, D.: Condition to a random suspension of spheres. Proc. R. Soc. London A 335, 355–367 (1973)CrossRefGoogle Scholar
  34. Kendoush, A.A.: Modification of the classical theory of the virtual mass of an accelerated spherical particle. In: Proc. of the FEDSM 2006, 2006 ASME Joint US-European Fluids Engineering Summer Meeting, Miami, FL, July 17-20 (2006)Google Scholar
  35. Klausner, J.F., Mei, R., Bernhard, D., Zeng, L.Z.: Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transfer 36, 651–662 (1993)CrossRefGoogle Scholar
  36. Kolev, N.I.: Two-phase two-component flow (air-water steam-water) among the safety compartments of the nuclear power plants with water cooled nuclear reactors during lose of coolant accidents. PhD Thesis, Technical University Dresden (1977)Google Scholar
  37. Kolev, N.I.: Transiente Dreiphasen-Dreikomponenten Strömung, Teil 1: Formulierung des Differentialgleichungssystems, KfK 3910 (March 1985)Google Scholar
  38. Kolev, N.I.: Transiente Dreiphasen-Dreikomponenten Strömung, Teil 3: 3D-Dreifluid-Diffusionsmodell, KfK 4080 (1986a)Google Scholar
  39. Kolev, N.I.: Transient three-dimensional three-phase three-component non equilibrium flow in porous bodies described by three-velocity fields. Kernenergie 29(10), 383–392 (1986b)Google Scholar
  40. Kolev, N.I.: A three field-diffusion model of three-phase, three-component Flow for the transient 3D-computer code IVA2/001. Nuclear Technology 78, 95–131 (1987)Google Scholar
  41. Kolev, N.I.: IVA3: A transient 3D three-phase, three-component flow analyzer. In: Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21-25, pp. 171–180 (1991a); Also presented at the 7th Meeting of the IAHR Working Group on Advanced Nuclear Reactor Thermal-Hydraulics, Kernforschungszentrum Karlsruhe, August 27-29 (1991)Google Scholar
  42. Kolev, N.I.: A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: conservation and state equations, Numerics. KfK 4948, Kernforschungszentrum Karlsruhe (September 1991b)Google Scholar
  43. Kolev, N.I., Tomiyama, A., Sakaguchi, T.: Modeling of the mechanical interaction between the velocity fields in three-phase flow. Experimental Thermal and Fluid Science 4(5), 525–545 (1991)CrossRefGoogle Scholar
  44. Kolev, N.I.: The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry. Kerntechnik 58(3), 147–156 (1993)Google Scholar
  45. Kolev, N.I.: IVA3 NW: Computer code for modeling of transient three-phase flow in complicated 3D geometry connected with industrial networks. In: Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France, October 5-8 (1993)Google Scholar
  46. Kolev, N.I.: Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasser-Kühlerrohrbruch, Projekt KKW Emsland, Siemens KWU Report R232/93/0002 (1993)Google Scholar
  47. Kolev, N.I.: IVA3-NW A three phase flow network analyzer. Input description, Siemens KWU Report R232/93/E0041 (1993)Google Scholar
  48. Kolev, N.I.: IVA3-NW components: relief valves, pumps, heat structures, Siemens KWU Report R232/93/E0050 (1993)Google Scholar
  49. Kolev, N.I.: IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994a)Google Scholar
  50. Kolev, N.I.: The code IVA4: Modelling of momentum conservation in multi-phase multicomponent flows in heterogeneous porous media. Kerntechnik 59(6), 249–258 (1994b)MathSciNetGoogle Scholar
  51. Kolev, N.I.: The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media. Kerntechnik 60(1), 1–39 (1995)Google Scholar
  52. Kolev, N.I.: Three Fluid Modeling with Dynamic Fragmentation and Coalescence Fiction or Daily practice? In: 7th FARO Experts Group Meeting Ispra, October 15-16 (1996); Proceedings of OECD/CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements, Annapolis, MD, November 5-8 (1996); 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2-6 (1997); ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, British Columbia, June 22-26 (1997); Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan, May 22-24 (1997)Google Scholar
  53. Kolev, N.I.: Comments on the entropy concept. Kerntechnik 62(1), 67–70 (1997)Google Scholar
  54. Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CA, October 3-8 (1999); Log. Nr. 315Google Scholar
  55. Kreith, F., Sonju, O.K.: The decay of turbulent swirl in pipe. J. Fluid Mech. 2(pt. 2), 257–271 (1965)CrossRefGoogle Scholar
  56. Krepper, E., Lucas, D., Prasser, H.-M.: On the modeling of bubbly flow in vertical pipes. Nucl. Eng. Des. 235, 597–611 (2005)CrossRefGoogle Scholar
  57. Krepper, E., Egorov, Y.: CFD-Modeling of subcooled boiling and application to simulate a hot channel of fuel assembly. In: 13th Int. Conference on Nuclear Engineering, Beijing, China, May 16-20 (2005)Google Scholar
  58. Lahey Jr., R.T.: Void wave propagation phenomena in two-phase flow. AIChE Journal 31(1), 123–135 (1991)CrossRefGoogle Scholar
  59. Lahey Jr., R.T.: The analysis of phase separation and phase distribution phenomena using two-fluid models. NED 122, 17–40 (1990)Google Scholar
  60. Lahey Jr., R.T., Lopez de Bertodano, M., Jones Jr., O.C.: Phase distribution in complex geometry conditions. Nucl. Eng. Des. 141, 177–201 (1993)CrossRefGoogle Scholar
  61. Lance, M., Bataille, J.: Turbulence in the liquid phase of a uniform bubbly air-water flow. J. Fluid Mech. 22, 95–118 (1991)CrossRefGoogle Scholar
  62. Lamb, M.A.: Hydrodynamics. Cambridge University Press, Cambridge (1945)Google Scholar
  63. Lamb, H.: Hydrodynamics. Dover, New York (1945)Google Scholar
  64. Laurien, E., Niemann, J.: Determination of the virtual mass coefficient for dense bubbly flows by direct numerical simulation. In: 5th Int. Conf. on Multiphase Flow, Yokohama, Japan, paper no 388 (2004)Google Scholar
  65. Lopez de Bertodano, M.: Turbulent bubbly two-phase flow in triangular duct. PhD Thesis, Renssaelaer Polytechnic Institute, Troy, NY (1992)Google Scholar
  66. Mamaev, W.A., Odicharia, G.S., Semeonov, N.I., Tociging, A.A.: Gidrodinamika gasogidkostnych smesey w trubach, Moskva (1969)Google Scholar
  67. Mei, R.: An approximate expression for the shear lift force on spherical particle at finite Reynolds number. Int. J. Multiphase Flow 18(1), 145–147 (1992)zbMATHCrossRefGoogle Scholar
  68. Mei, R., Klausner, J.F.: Shear lift force on spherical bubbles. Int. J. Heat Fluid Flow 15, 62–65 (1995)CrossRefGoogle Scholar
  69. Milne-Thomson, L.M.: Theoretical Hydrodynamics. MacMillan & Co. Ltd., London (1968)zbMATHGoogle Scholar
  70. Mokeyev, G.Y.: Effect of particle concentration on their drag induced mass. Fluid. Mech. Sov. Res. 6, 161 (1977)Google Scholar
  71. Naciri, A.: Contribution à l’étude des forces exercées par un liquide sur une bulle de gaz: portance, masse ajoutée et interactions hydrodynamiques. Doctoral Dissertation, École Central de Lyon, France (1992)Google Scholar
  72. Nigmatulin, R.I.: Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J. Multiphase Flow 4, 353–385 (1979)CrossRefGoogle Scholar
  73. Nigmatulin, R.T.: Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J. of Multiphase Flow 5, 353–389 (1979)zbMATHCrossRefGoogle Scholar
  74. No, H.C., Kazimi, M.S.: Effects of virtual mass of the mathematical characteristics and numerical stability of the two-fluid model. NSE 89, 197–206 (1985)Google Scholar
  75. Pougatch, K., Salcudean, M., Chan, E., Knapper, B.: Modeling of compressible gas–liquid flow in convergent-divergent nozzle. Chemical Engineering Science 63, 4176–4188 (2008)CrossRefGoogle Scholar
  76. Prandtl, L.: Essentials of Fluid Dynamics, p. 342. Blackie & Son, Glasgow (1952)zbMATHGoogle Scholar
  77. Ransom, V.H., et al.: RELAP5/MOD2 Code manual, vol. 1: Code structure, system models, and solution methods, NUREG/CR-4312, EGG-2396. rev. 1, (March 1987)Google Scholar
  78. Ruggles, A.E., et al.: An investigation of the propagation of pressure perturbation in bubbly air/water flows. Trans. ASME J. Heat Transfer 110, 494–499 (1988)CrossRefGoogle Scholar
  79. Schlichting, H.: Boundary layer theory. McGraw-Hill, New York (1959)Google Scholar
  80. Sha, T., Chao, B.T., Soo, S.L.: Porous-media formulation for multi-phase flow with heat transfer. Nuclear Engineering and Design 82, 93–106 (1984)CrossRefGoogle Scholar
  81. Shi, J.-M., Burns, A.D., Prasser, H.-M.: Turbulent dispersion in poly-dispersed gas–liquid flows in a vertical pipe. In: 13th Int. Conf. on Nuclear Engineering, ICONE, Beijing, China, May 16-20, vol. 13 (2005)Google Scholar
  82. Slattery, J.C.: Flow of visco-elastic fluids through porous media. AIChE J. 13, 1066 (1967)CrossRefGoogle Scholar
  83. Slattery, J.C.: Interfacial transport phenomena. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  84. Slattery, J.C.: Advanced transport phenomena. Cambridge University Press, Cambridge (1999)zbMATHCrossRefGoogle Scholar
  85. Staffman, P.G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22(pt. 2), 385–400 (1965)CrossRefGoogle Scholar
  86. Staffman, P.G.: Corrigendum to “The lift on a small sphere in a slow shear flow”. J. Fluid Mech. 31, 624 (1968)CrossRefGoogle Scholar
  87. Steenberger, W.: Turbulent flow in a pipe with swirl. PhD thesis Eindhoven University of Technology (1995)Google Scholar
  88. Stokes, G.G.: On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans. Cambridge Phil. Soc. 8, 287–305 (1845)Google Scholar
  89. Stuhmiller, J.H.: The influence of the interfacial pressure forces on the character of the twophase flow model. In: Proc. of the 1977 ASME Symp. on Computational Techniques for Non-Equilibrium Two-Phase Phenomena, pp. 118–124 (1977)Google Scholar
  90. Thomas Jr., G.B., Finney, R.L., Weir, M.D.: Calculus and analytic geometry, 9th edn. Addison-Wesley Publishing Company, Reading (1998)Google Scholar
  91. Tomiyama, A.: Struggle with computational bubble dynamics. In: Proc. of the 3rd Int. Conf. on Multiphase Flow ICMF 1998, France (1998)Google Scholar
  92. Tomiyama, A., et al.: Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci. 57, 1849–1858 (2002)CrossRefGoogle Scholar
  93. Trent, D.S., Eyler, L.L.: Application of the TEMPTEST computer code for simulating hydrogen distribution in model containment structures, PNL-SA-10781, DE 83 002725 (1983)Google Scholar
  94. Truesdell, C.: Essays in the history of mechanics. Springer, New York (1968)zbMATHCrossRefGoogle Scholar
  95. van Wijngaarden, L.: Hydrodynamic interaction between the gas bubbles in liquid. J. Fluid Mechanics 77, 27–44 (1976)zbMATHCrossRefGoogle Scholar
  96. van Wijngaarden, L.: On pseudo turbulence. Theor. Comp. Fluid Dyn. 10, 449–458 (1998)zbMATHCrossRefGoogle Scholar
  97. Vasseur, P., Cox, R.G.: The lateral migration of spherical particles in two-dimensional shear flows. J. Fluid Mech. 78(pt. 2), 385–413 (1976)zbMATHCrossRefGoogle Scholar
  98. Wang, S.K., Lee, S.J., Jones, O.C., Lahey Jr., R.T.: 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13(3), 327–343 (1987)CrossRefGoogle Scholar
  99. Wellek, R.M., Agrawal, A.K., Skelland, A.H.P.: Shapes of liquid drops moving in liquid media. AIChE J. 12, 854 (1966)CrossRefGoogle Scholar
  100. Whitaker, S.: Diffusion and dispersion in porous media. AIChE Journal 13, 420 (1967)CrossRefGoogle Scholar
  101. Whitaker, S.: Advances in theory of fluid motion in porous media. Ind. Engrg. Chem. 61(12), 14–28 (1969)CrossRefGoogle Scholar
  102. Whitaker, S.: A Simple geometrical derivation of the spatial averaging theorem. Chem. Eng. Edu. 18-21, 50–52 (1985)Google Scholar
  103. Winatabe, T., Hirano, M., Tanabe, F., Kamo, H.: The effect of the virtual mass force term on the numerical stability and efficiency of the system calculations. Nucl. Eng. Des. 120, 181–192 (1990)CrossRefGoogle Scholar
  104. Wallis, G.B.: One-dimensional two-phase flow. McGraw-Hill, New York (1969)Google Scholar
  105. Yamamotto, Y., Potthoff, M., Tanaka, T., Kajishima, Tsui, Y.: Large-eddy simulation of turbulent gas-particcle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001)Google Scholar
  106. Zuber, N.: On the dispersed two-phase flow in the laminar flow regime. Chem. Eng. Science 49, 897–917 (1964)CrossRefGoogle Scholar
  107. Zun, I.: The transferees migration of bubbles influenced by walls in vertical bubbly flow. Int. J. Multiphase Flow 6, 583–588 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations