Advertisement

Numerical Methods for Multi-phase Flow in Curvilinear Coordinate Systems

  • Nikolay Ivanov KolevEmail author
Chapter
  • 1.9k Downloads

Abstract

This chapter presents a numerical solution method for multi-phase flow analysis based on local volume and time averaged conservation equations. The emphasis of this development was to create a computer code architecture that absorb all the constitutive physics and functionality from the past 25years development of the three fluid multi-component IVA-entropy concept for multi-phase flows into a boundary fitted orthogonal coordinate framework. Collocated discretization for the momentum equations is used followed by weighted averaging for the staggered grids resulting in analytical expressions for the normal velocities. Using the entropy concept analytical reduction to a pressure-velocity coupling is found. The performance of the method is demonstrated by comparison of two cases for which experimental results and numerical solution with the previous method are available. The agreement demonstrates the success of this development.

Keywords

Mass Conservation Equation Curvilinear Coordinate System Regular Topology Constrain Interpolation Profile Contravariant Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antal, S.P., et al.: Development of a next generation computer code for the prediction of multi-component multiphase flows. In: Int. Meeting on Trends in Numerical and Physical Modeling for Industrial Multiphase Flow, Cargese, France (2000)Google Scholar
  2. Brackbill, J.U., Kothe, D.B., Zeinach, C.: A continuum method for modelling surface tension. Journal of Computational Physics 100, 335 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  3. Gregor, C., Petelin, S., Tiselj, I.: Upgrade of the VOF method for the simulation of the dispersed flow. In: Proc. of ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, June 11-15 (2000)Google Scholar
  4. Harlow, F.H., Amsden, A.A.: Numerical calculation of multiphase flow. Journal of Computational Physics 17, 19–52 (1975)zbMATHCrossRefGoogle Scholar
  5. Hirt, C.W.: Volume-fraction techniques: powerful tools for wind engineering. J. Wind Engineering and Industrial Aerodynamics 46-47, 327 (1993)CrossRefGoogle Scholar
  6. Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.C.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329 (1995)zbMATHCrossRefGoogle Scholar
  7. Jamet, D., Lebaigue, O., Courtis, N., Delhaye: The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. Journal of Comp. Physics 169, 624–651 (2001)Google Scholar
  8. Kolev, N.I.: IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994)Google Scholar
  9. Kolev, N.I.: The code IVA4: Modelling of momentum conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik 59(6), 249–258 (1994)MathSciNetGoogle Scholar
  10. Kolev, N.I.: The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media. Kerntechnik 60(1), 1–39 (1995)Google Scholar
  11. Kolev, N.I.: Comments on the entropy concept. Kerntechnik 62(1), 67–70 (1997)Google Scholar
  12. Kolev, N.I.: On the variety of notation of the energy conservation principle for single phase flow. Kerntechnik 63(3), 145–156 (1998)Google Scholar
  13. Kolev, N.I.: Conservation equations for multi-phase multi-component multi-velocity fields in general curvilinear coordinate systems, Keynote lecture. In: Proceedings of ASME FEDSM 2001, ASME 2001 Fluids Engineering Division Summer Meeting, New Orleans, Louisiana, May 29-June 1 (2001)Google Scholar
  14. Kothe, D.B., Rider, W.J., Mosso, S.J., Brock, J.S., Hochstein, J.I.: Volume tracking of Interfaces having surface tension in two and three dimensions. AIAA 96-0859 (1996)Google Scholar
  15. Kumbaro, A., Toumi, I., Seignole, V.: Numerical modeling of two-phase flows using advanced two fluid system. In: Proc. of ICONE10, 10th Int. Conf. on Nuclear Engineering, Arlington, VA, USA, April 14-18 (2002)Google Scholar
  16. Lahey Jr, R.T., Drew, D.: The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model. In: Ninth Int. Top. Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999)Google Scholar
  17. Miettinen, J., Schmidt, H.: CFD analyses for water-air flow with the Euler-Euler two-phase model in the FLUENT4 CFD code. In: Proc. of ICONE10, 10th Int. Conf. on Nuclear Engineering, Arlington, VA, USA, April 14-18 (2002)Google Scholar
  18. Nakamura, T., Tanaka, R., Yabe, T., Takizawa, K.: Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique. J. Comput. Phys. 147, 171 (2001)MathSciNetCrossRefGoogle Scholar
  19. Nourgaliev, R.R., Dinh, T.N., Sehgal, B.R.: On lattice Boltzmann modelling of phase transition in isothermal non-ideal fluid. Nuclear Engineering and Design 211, 153–171 (2002)CrossRefGoogle Scholar
  20. Osher, S., Fredkiw, R.: Level set methods and dynamic implicit surfaces. Springer-Verlag New York, Inc. (2003)Google Scholar
  21. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. Journal of Computational Physics 141, 112 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  22. Staedke, H., Franchello, G., Worth, B.: Towards a high resolution numerical simulation of transient two-phase flow. In: Third International Conference on Multi-Phase, ICMF 1998, June 8-12 (1998)Google Scholar
  23. Sussman, M., Smereka, P., Oslier, S.: A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics 114, 146 (1994)zbMATHCrossRefGoogle Scholar
  24. Swthian, J.A.: Level set methods. Cambridge University Press (1996)Google Scholar
  25. Takewaki, H., Nishiguchi, A., Yabe, T.: The Cubic-Interpolated Pseudo Particle (CIP) Method for Solving Hyperbolic-Type Equations. J. Comput. Phys. 61, 261 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  26. Takewaki, H., Yabe, Y.: Cubic-Interpolated Pseudo Particle (CIP) Method - Application to Nonlinear Multi-Dimensional Problems. J. Cornput. Phys. 70, 355 (1987)zbMATHCrossRefGoogle Scholar
  27. Tomiyama, A., et al.: (N+2)-Field modelling of dispersed multiphase flow. In: Proc. of ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, June 11-15 (2000)Google Scholar
  28. Toumi, I., et al.: Development of a multi-dimensional upwind solver for two-phase water/steam flows. In: Proc. of ICONE 8, 8th Int. Conf. on Nuclear Engineering, Baltimore, MD USA, April 2-6 (2000)Google Scholar
  29. Tryggavson, G., et al.: A front tracking method for the computations of multiphase flows. Journal of Comp. Physics 169, 708–759 (2001)CrossRefGoogle Scholar
  30. Verschueren, M.: A difuse-interface model for structure development in flow. PhD Thesis, Technische Universitteit Eindhoven (1999)Google Scholar
  31. van Wijngaarden, L.: Hydrodynamic interaction between gas bubbles in liquid. J. Fluid Mech. 77, 27–44 (1976)zbMATHCrossRefGoogle Scholar
  32. Yabe, T., Takei, E.: A New Higher-Order Godunov Method for General Hyperbolic Equations. J. Phys. Soc. Japan 57, 2598 (1988)MathSciNetCrossRefGoogle Scholar
  33. Xiao, F., Yabe, T.: Completely conservative and oscillation-less semi-Lagrangian schemes for advection transportation. J. Comput. Phys. 170, 498 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  34. Xiao, F., Yabe, T., Peng, X., Kobayashi, H.: Conservation and oscillation-less transport schemes based an rational functions. J. Geophys. Res. 107, 4609 (2002)CrossRefGoogle Scholar
  35. Xiao, F.: Profile-modifiable conservative transport schemes and a simple multi integrated moment formulation for hydrodynamics. In: Amfield, S., Morgan, P., Srinivas, K. (eds.) Computational Fluid Dynamics 2002, p. 106. Springer (2003)Google Scholar
  36. Xiao, F., Ikebata, A.: An efficient method for capturing free boundary in multi-fluid simulations. Int. J. Numer. Method in Fluid 42, 187–210 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  37. Yabe, T., Wang, P.Y.: Unified Numerical Procedure for Compressible and Incompressible Fluid. J. Phys. Soc. Japan 60, 2105–2108 (1991)CrossRefGoogle Scholar
  38. Yabe, T., Aoki, A.: A Universal Solver for Hyperbolic-Equations by Cubic Polynomial Interpolation. I. One-Dimensional Solver. Comput. Phys. Commun. 66, 219 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  39. Yabe, T., Ishikawa, T., Wang, P.Y., Aoki, T., Kadota, Y., Ikeda, F.: A universal solver for hyperbolic-equations by cubic-polynomial interpolation. II. 2-dimensional and 3-dimensional solvers. Comput. Phys. Commun. 66, 233 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  40. Yabe, T., Xiao, F., Utsumi, T.: Constrained Interpolation Profile Method for Multiphase Analysis. J. Comput. Phys. 169, 556–593 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  41. Yabe, T., Tanaka, R., Nakamura, T., Xiao, F.: Exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension. Mon. Wea. Rev. 129, 332 (2001)CrossRefGoogle Scholar
  42. Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556 (2001)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations