Numerical Solution Methods for Multi-phase Flow Problems

  • Nikolay Ivanov KolevEmail author


Numerical methods for transient single-phase flow analysis are available and in widespread use for practical applications. Methods for cost-effective solution of multi-phase flow problems are still in their infancy. There is a significant experience base available for two-phase flows, e.g. gas/liquid and dispersed solid particles/gas flow for the special case of small concentrations in the dispersed phase. To my knowledge, there is no universal method for integrating systems of partial differential equations describing multi-phase flows. The purpose of this work is to present the methods derived for the computer codes IVA2 to IVA6 and to give a short description of the experience gained with these methods.


Velocity Field Characteristic Point Time Plane Mass Conservation Equation Pipe Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addessio, F.L., et al.: TRAC-PF1, An advanced best-estimate computer program for pressurised water reactor analysis, NUREG/CR-3567, LA-9844-MS (February 1984)Google Scholar
  2. Addessio, F.L., et al.: TRAC-PF1/MOD1 Computer Code and Developmental Assessment. Nuclear Safety 26(4), 438–454 (1985)Google Scholar
  3. Andersen, J.G.M., Schang, J.C.: A predictor- corrector method for the BWR version of the TRAC computer code. In: Farukhi, N.M. (ed.) AICHE Symposium Series, Heat Transfer - Niagara Falls, vol. 236.80, pp. 275–280 (1984)Google Scholar
  4. Amsden, A.A.: KIVA: A computer program for two- and three-dimensional fluid flows with chemical reactions and fuel sprays, LA-10245-MS (1985)Google Scholar
  5. Bohl, W.R., et al.: Multi-phase flow in the advanced fluid dynamics model. In: ANS Proc. 1988, Nat. Heat Transfer Conf., HTC-3, Houston, Texas, July 24-July 27, pp. 61–70 (1988)Google Scholar
  6. Caretto, L.S., Gosman, A.D., Patankar, S.V., Spalding, D.B.: Two calculation procedures for steady, three dimensional flow with recirculation. In: Proc. 3rd Int. Conf. on Numerical Methods in Fluid Mechanics. Lecture Notes in Physics, vol. 11(19), pp. 60–68. Springer (1973)Google Scholar
  7. Chow, L.C., Tien, C.L.: An examination of four differencing schemes for some elliptic-type convection equations. Numerical Heat Transfer 1, 87–100 (1978)Google Scholar
  8. Connell, S.D., Stow, P.: A discussion and comparison of numerical techniques used to solve the Navier-Stokes and Euler equations. Int. J. for Num. Math. in Eng. 6, 155–163 (1986)zbMATHMathSciNetGoogle Scholar
  9. Courant, R., Isacson, E., Rees, M.: On the solution of non-linear hyperbolic differential equations by finite differentials. Commun. Pure Appl. Math. 5, 243 (1952)zbMATHCrossRefGoogle Scholar
  10. Dearing, J.F.: A four-fluid model of PWR degraded cores. In: Third Int. Top. Meeting on Reactor Thermal Hydraulics, Newport, Rhode Island, October 15-18, pp. 85–947 (1985), LA-UR- 85- 947/ CONF-85/007–3 Google Scholar
  11. Ferzinger, J.H., Paric: Computational methods for fluid dynamics, 3rd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  12. Günther, C.: Monotone Upwind-Verfahren 2.Ordnung zur Loesung der Konvektions-Diffusionsgleichungen. ZAMM. Z. Angew. Math. Mech. 68(5), T383–T384 (1988)Google Scholar
  13. Günther, C.: Vergleich verschiedener Differenzenverfahren zur numerischen Loesungen der 2-d Konvektions-Diffusionsgleichungen anhand eines Beispieles mit bekannter exakter Loesungen, Kernforschungszentrum Karlsruhe, KfK 4439 (August 1988)Google Scholar
  14. Gushchin, V.A., Shchennikov, V.V.: A monotonic difference scheme of second order accuracy. Zh. Vychisl. Mat. Mat. Fiz. 14(3), 789–792 (1974)Google Scholar
  15. Haaland, S.E.: Calculation of entrainment rate, initial values, and transverse velocity for the Patankar-Spalding method. Numerical Heat Transfer 7, 39–57 (1984)zbMATHCrossRefGoogle Scholar
  16. Harlow, F.H., Amsden, A.A.: A numerical fluid dynamics calculations method for all flow speeds. J. Comp. Physics 8, 197–213 (1971)zbMATHCrossRefGoogle Scholar
  17. Issa, R.I.: Numerical Methods for Two- and Tree-Dimensional Recirculating Flows. In: Essers, J.A. (ed.) Comp. Methods for Turbulent Transonic and Viscous Flow, p. 183. Hemisphere, Springer (1983)Google Scholar
  18. Kelly, J.M., Kohrt, J.R.: COBRA-TF: Flow blockage heat transfer program. In: Proc. Eleventh Water Reactor Safety Research Information Meeting, Gaithersburg - Maryland, NUREG/CP-0048, 1, October 24-28, pp. 209–232 (1983)Google Scholar
  19. Knight, T.D. (ed.): TRAC-PD2 Independent Assessment, NUREG/CR-3866, LA- 10166 (1984)Google Scholar
  20. Kolev, N.I.: IVA-2 A Computer Code for Modeling of Three Dimensional, Three- Phase, Three-Component Flow by Means of Three Velocity Fields in Cylindrical Geometry with Arbitrary Internal Structure Including Nuclear Reactor Core. In: Proc. of the Int. Seminar “Thermal physics 86” held in Rostock, German Democratic Republic (October 1986) (in Russian)Google Scholar
  21. Kolev, N.I.: A three field-diffusion model of three-phase, threecomponent flow for the transient 3D-computer code IVA2/001. Nuclear Technology 78, 95–131 (1987)Google Scholar
  22. Kolev, N.I.: Derivatives for the state equations of multi-component mixtures for universal multi-component flow models. Nuclear Science and Engineering 108, 74–87 (1990)Google Scholar
  23. Kolev, N.I.: A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 2: Models for the interfacial transport phenomena. Code validation. KfK 4949 Kernforschungszentrum Karlsruhe (September 1991)Google Scholar
  24. Kolev, N.I., Tomiyama, A., Sakaguchi, T.: Modeling of the mechanical interaction between the velocity fields in three phaseflow. Experimental Thermal and Fluid Science 4(5), 525–545 (1991)CrossRefGoogle Scholar
  25. Kolev, N.I.: Fragmentation and coalescence dynamics in multi-phase flows. Experimental Thermal and Fluid Science 6, 211–251 (1993)CrossRefGoogle Scholar
  26. Kolev, N.I.: IVA4 computer code: dynamic fragmentation model for liquid and its aplication to melt water interaction. In: Proc. ICONE-3, Third International Conf. on Nucl. Engineering, “Nuclear Power and Energy Future”, Kyoto, Japan, Apr. 23-27. Presented at the “Workshop zur Kühlmittel/ Schmelze - Wechselwirkung”, Cologne, Germany, November 14-15 (1994)Google Scholar
  27. Kolev, N.I.: The code IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994b)Google Scholar
  28. Kolev, N.I.: The code IVA4: Modeling of momentum conservation in multi-phase flows in heterogeneous porous media. Kerntechnik 59(6), 249–258 (1994c)MathSciNetGoogle Scholar
  29. Kolev, N.I.: The code IVA4: Second Law of Thermodynamics for Multi-Phase Multi-Component Flows in Heterogeneous Porous Media. Kerntechnik 60(1), 28–39 (1995a)Google Scholar
  30. Kolev, N.I.: How accurate can we predict nucleate boiling. Experimental Thermal and Fluid Science 10, 370–378 (1995b)CrossRefGoogle Scholar
  31. Kolev, N.I.: The code IVA4: Nucleation and flashing model. Kerntechnik 60(6), 157–164 (1995c); Also in: Proc. Second Int. Conf. On Multiphase Flow, Kyoto, April 3-7 (1995); 1995 ASME & JSME Fluid Engineering Conference International Symposium on Validation of System Transient Analysis Codes, Hilton Head (SC) USA, August 13-18 (1995); Int. Symposium on Two-Phase Flow Modeling and Experimentation, ERGIFE Place Hotel, Rome, Italy, October 9-11 (1995)Google Scholar
  32. Kolev, N.I.: IVA4 computer code: The model for film boiling on a sphere in subcooled, saturated and superheated water. In: Proc. Second Int. Conference on Multiphase Flow, Kyoto, Japan, April 3-7, pp. 14–15 (1995d); Presented at the “Workshop zur Kühlmittel/Schmelze - Wechselwirkung”, Cologne, Germany, November 14-15 (1994)Google Scholar
  33. Kolev, N.I.: Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? In: 7th FARO Experts Group Meeting Ispra, October 15-16 (1996); Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirements, Annapolis, Md, U.S.A., November 5-8 (1996); 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2-6 (1997); ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA, June 22-26 (1997), Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22-24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan (1997)Google Scholar
  34. Kolev, N.I.: Strictly conservative limiter for fourth order CIP methods for multi-fluid analyses. In: The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11) Log Number: 006, Popes Palace Conference Center, Avignon, France, October 2-6 (2005)Google Scholar
  35. Köller, A.: Anwendung numerischer Lösungsverfahren der Navier-Stokes-Gleichung zur Vermeidung von Wirbeln. Siemens Forsch.-u. Entwickl.-Ber. 9(2), 99–104 (1980)Google Scholar
  36. Latimaer, B.R., Pollard, A.: Comparison of pressure-velocity coupling solution algorithms. Num. Heat Transfer 8, 635–652 (1985)Google Scholar
  37. Leonard, B.P.: Third-order finite-difference method for steady two- dimensional convection. Num. Meth. in Laminar and Turbulent Flow, pp. 807–819 (1978)Google Scholar
  38. Leonard, B.P., Mokhtari, S.: Beyond first - order up winding: The ultra - sharp alternative for non - oscillatory Steady - state simulation of convection. Int. J. for Numerical Methods in Engineering 30, 729–766 (1990)CrossRefGoogle Scholar
  39. Leonard, B.P.: New flash: Upstream parabolic interpolation. In: Proc. 2nd GAMM Conference on Num. Meth. in Fluid Mechanics, Köln, Germany (1990)Google Scholar
  40. Liles, D., Reed, W.R.: A semi-implicit method for two-phase fluid dynamics. J. of Comp. Physics 26, 390–407 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  41. Liles, D., et al.: TRAC-FD2 An advanced best-estimate computer program for pressurized water reactor loss-of-coolant accident analysis, NUREG/CR-2054, LA-8709 MS (April 1981)Google Scholar
  42. Liles, D., Mahaffy, J.M.: An approach to fluid mechanics calculations on serial and parallel computer architectures. In: Parter, S.V. (ed.) Large Scale Scientific Computation, pp. 141–159. Academic Press, Inc., Orlando (1984)Google Scholar
  43. Mahaffy, J.H., Liles, D.: Applications of implicit numerical methods to problems in two phase flow, NUREG/CR-0763, LA-7770-MS (April 1979)Google Scholar
  44. Mahaffy, J.H.: A stability-enhancing two-phase method for fluid flow calculations. NUREG/CR-0971, LA-7951-MS (1979) or J. of Comp. Physics 46(3) (June 1983)Google Scholar
  45. Neuberger, A.W.: Optimierung eines numerischen Verfahrens zur Berechnung elliptischer Strömungen, DFVLR- FB84-16 (March 1984)Google Scholar
  46. Patankar, S.V., Spalding, D.B.: A finite-difference procedure for solving the equations of the two dimensional boundary layer. Int. J. Heat Mass Transfer 10, 1389–1411 (1967)zbMATHCrossRefGoogle Scholar
  47. Patankar, S.V.: A numerical method for conduction in composite materials, Flow in Irregular Geometries and Conjugate Heat Transfer. In: Proc. 6th Int. Heat Transfer Conf., Toronto, vol. 3, p. 297 (1978)Google Scholar
  48. Patankar, S.V.: Numerical heat transfer and fluid flow. Hemisphere, New York (1980)zbMATHGoogle Scholar
  49. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787–1806 (1972)zbMATHCrossRefGoogle Scholar
  50. Patankar, S.V., Rafiinejad, D., Spalding, D.B.: Calculation of the three-dimensional boundary layer with solution of all three momentum equations. In: Computer Methods in Applied Mechanics and Engineering, vol. 6, pp. 283–292. North-Holland Publ. Company (1975)Google Scholar
  51. Patankar, S.V.: Numerical prediction of three dimensional flows. In: Lauder, B.E. (ed.) Studies in Convection, Theory, Measurement and Application, vol. 1. Academic Press, London (1975)Google Scholar
  52. Patankar, S.V., Basn, D.K., Alpay, S.: A prediction of the three-dimensional velocity field of a deflected turbulent jet. Transactions of the ASME, Journal of Fluids Engineering, 758–767 (December 1977)Google Scholar
  53. Patankar, S.V.: A calculation procedure for two-dimensional elliptic situations. Numerical Heat Transfer 4, 409–425 (1981)CrossRefGoogle Scholar
  54. Prakash, C.: Application of the locally analytic differencing scheme to some test problems for the convection- diffusion equation. Numerical Heat Transfer 7, 165–182 (1984)zbMATHCrossRefGoogle Scholar
  55. Patel, M.K., Markatos, N.C., Cross, M.S.: A critical evaluation of seven discretization schemes for convection-diffusion equations. Int. J. Num. Methods in Fluids, 225–244 (1985)Google Scholar
  56. Patel, M.K., Markatos, N.C.: An evaluation of eight discretization schemes for two- dimensional convection- diffusion equations. Int. J. for Numerical Methods in Fluids 6, 129–154 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  57. Prior, R.J.: Computational methods in thermal reactor safety, NUREG/CR-0851, LA-7856-MS (June 1979)Google Scholar
  58. Pollard, A., Aiu, L.W.A.: The calculation of some laminar flows using various discretization schemes. Comp. Math. Appl. Mesh. Eng. 35, 293–313 (1982)zbMATHCrossRefGoogle Scholar
  59. Rohatgi, U.S.: Assessment of TRAC codes with Dartmouth college counter-current flow tests. Nuclear Technology 69, 100–106 (1985)Google Scholar
  60. Roscoe, D.F.: The solution of the three-dimensional Navier-Stokes equations using a new finite difference approach. Int. J. for Num. Math. Int. J. for Num. Math. in Eng. 10, 1299–1308 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  61. Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston (1996)zbMATHGoogle Scholar
  62. Sargis, D.A., Chan, P.C.: An implicit fractional step method for two-phase flow. Basic Aspects of Two Phase Flow and Heat Transfer, HTD-34, pp. 127–136 (1984)Google Scholar
  63. Scarborough, J.B.: Numerical mathematical analysis, 4th edn. John Hopkins Press, Baltimore (1958)Google Scholar
  64. Spalding, D.B.: The Calculation of Free-Convection Phenomena in Gas-Liquid Mixtures, ICHMT Seminar Dubrovnik (1976). In: Afgan, N., Spalding, D.B. (eds.) Turbulent Buoyant Convection, pp. 569–586. Hemisphere, Washington (1976), or HTS Report 76/11 (1977)Google Scholar
  65. Spalding, D.B.: Multi-phase flow prediction in power system equipment and components. In: EPRI Workshop on Basic Two-Phase Flow Modelling in Reactor Safety and Performance, Tampa, Florida (March 1979)Google Scholar
  66. Spalding, D.B.: Mathematical modeling of fluid mechanics, Heat-Transfer and Chemical - Reaction Processes, A lecture course, Imperial College of Science and Technology, Mech. Eng. Dep., London. HTS Report 80/1 (January 1980)Google Scholar
  67. Spalding, D.B.: Numerical computation of multi-phase fluid flow and heat transfer. In: Taylor, C., Morgan, K. (eds.) Recent Advances in Numerical Methods in Fluids, pp. 139–167 (1980)Google Scholar
  68. Spalding, D.B.: Development in the IPSA procedure for numerical computation of multi-phase, slip, unequal temperature, etc. Imperial College of Science and Technology, Mech. Eng. Dep., London. HTS Report 81/11 (June 1981)Google Scholar
  69. Spalding, D.B.: A general purpose computer program for multi-dimensional one- and two-phase flow. Mathematics and Computers in Simulation XXIII, 267–276 (1981)CrossRefGoogle Scholar
  70. Spalding, D.B.: Numerical computation of multiphase flows, A course of 12 lectures with GENMIX 2P, Listing and 5 Appendices, HTS Report 81/8 (1981)Google Scholar
  71. Tanaka, R., Nakamura, T., Yabe, T.: Constructing an exactly conservative scheme in a non conservative form. Comput. Phys. Commun. 126, 232 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  72. Tomiyama, A.: Study on finite difference methods for fluid flow using difference operators and iteration matrices. PhD Thesis, Tokyo Institute of Technology (1990)Google Scholar
  73. Thurgood, M.J., Cuta, J.M., Koontz, A.S., Kelly, J.M.: COBRA/TRAC - A thermal hydraulic code for transient analysis of nuclear reactor vessels and primary coolant systems, NUREG/CR-3046 1-5 (1983)Google Scholar
  74. van Doormaal, J.P., Raithby, G.D.: Enhancement of the SIMPLE method for prediction of incompressible fluid flows. Numerical Heat Transfer 7, 147–163 (1984)zbMATHGoogle Scholar
  75. Vanka, S.P.: Block-implicit calculation of steady turbulent recirculating flows. Int. J. Heat Mass Transfer 28(11), 2093–2103 (1985)zbMATHCrossRefGoogle Scholar
  76. Williams, K.A., Liles, D.R.: Development and assessment of a numerical fluid dynamics model for non-equilibrium steam-water flows with entrained droplets. In: Farukhi, N.M. (ed.) AICHE Symposium Series, Heat Transfer - Niagara Falls 1984, vol. 236.80, pp. 416–425 (1984)Google Scholar
  77. Xiao, F., Ikebata, A., Hasegawa, T.: Multi-fluid simulation by multi integrated moment method. Computers & Structures (2004)Google Scholar
  78. Yabe, T., Takewaki, H.: CIP, A new numerical solver for general non linear hyperbolic equations in multi-dimension, KfK 4154, Kernforschungszentrum Karlsruhe (Dezember 1986)Google Scholar
  79. Yabe, T., Xiao, F.: Description of complex sharp interface during shock wave interaction with liquid drop. Journal of Computational Physics of Japan 62(8), 2537–2540 (1993)CrossRefGoogle Scholar
  80. Yabe, T., Xiao, F., Mochizuki, H.: Simulation technique for dynamic evaporation processes. Nuclear Engineering and Design 155, 45–53 (1995)CrossRefGoogle Scholar
  81. Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. Journal of Computational Physics 169, 556–593 (2001)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations