Mass Conservation

  • Nikolay Ivanov KolevEmail author


The creation of computer codes for modeling multiphase flows in industrial facilities is very complicated, time-consuming, and expensive. This is why the fundamentals on which such codes are based are subject to continuous review in order to incorporate the state of the art of knowledge into the current version of the code in question. An important element of the codes is the system of partial differential equations governing the flow. The understanding of each particular term in these equations is very important for the application.


Velocity Field Control Volume Mass Conservation Multiphase Flow Local Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T.B., Jackson, R.: A fluid mechanical description of fluidized beds. Ind. Eng. Fundam. 6, 527 (1967)CrossRefGoogle Scholar
  2. Batchelor, G.K.: The stress system in a suspension of force-free particles. J. Fluid Mech. 42, 545–570 (1970)MathSciNetCrossRefGoogle Scholar
  3. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  4. Delhaye, J.M., Giot, M., Reithmuller, M.L.: Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Hemisphere Publishing Corporation, McGraw Hill, New York (1981)Google Scholar
  5. Deich, M.E., Philipoff, G.A.: Gas dynamics of two phase flows. Energoisdat, Moscow (1981) (in Russian) Google Scholar
  6. Faeth, G.M.: Spray combustion: a review. In: Proc. of 2nd International Conference on Multiphase Flow 1995, Kyoto, Japan, April 3-7 (1995)Google Scholar
  7. Fick, A.: Über Diffusion. Ann. der Physik 94, 59 (1855)CrossRefGoogle Scholar
  8. Gentry, R.A., Martin, R.E., Daly, B.J.: An Eulerian differencing method for unsteady compressible flow problems. J. Comp. Physics 1, 87 (1966)zbMATHCrossRefGoogle Scholar
  9. Gray, W.G., Lee, P.C.Y.: On the theorems for local volume averaging of multi-phase system. Int. J. Multi-Phase Flow 3, 222–340 (1977)CrossRefGoogle Scholar
  10. Grigorieva, V.A., Zorina, V.M. (eds.): Handbook of thermal engineering, thermal engineering experiment, 2nd edn., Moskva, Atomisdat, vol. 2 (1988) (in Russian) Google Scholar
  11. Griffith, L.: A theory of the size distribution of particles in a comminuted system. Canadian J. Res. 21A(6), 57–64 (1943)MathSciNetCrossRefGoogle Scholar
  12. Hetstrony, G.: Handbook of multi phase systems. Hemisphere Publ. Corp., McGraw-Hill Book Company, Washington, New York (1982)Google Scholar
  13. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)zbMATHCrossRefGoogle Scholar
  14. Hirt, C.W.: Volume-fraction techniques: powerful tools for wind engineering. Journal of Wind Engineering and Industrial Aerodynmics 46&47, 327–338 (1993)CrossRefGoogle Scholar
  15. Ishii, M.: Thermo-fluid dynamic theory of two-phase flow. Eyrolles, Paris (1975) 38 1 Mass conservationGoogle Scholar
  16. Kataoka, I., Ishii, M., Mishima, K.: Transactions of the ASME 105, 230–238 (1983)Google Scholar
  17. Kocamustafaogulari, G., Ishii, M.: Interfacial area and nucleation site density in boiling systems. Int. J. Heat Mass Transfer 26(9), 1377–1387 (1983)CrossRefGoogle Scholar
  18. Kolev, N.I.: Transiente Drephasen Dreikomponenten Strömung, Teil 1: Formulierung des Differentialgleichungssystems. KfK Report 3910 (March 1985a)Google Scholar
  19. Kolev, N.I.: Transiente Dreiphasen Dreikomponenten Stroemung, Teil 2: Eindimensionales Schlupfmodell Vergleich Theorie-Experiment. KfK Report 3926 (August 1985b)Google Scholar
  20. Kolev, N.I.: Transiente Dreiphasen Dreikomponenten Strömung, Teil 3: 3D-Dreifluid-Diffusionsmodell. KfK Report 4080 (1986a)Google Scholar
  21. Kolev, N.I.: Transient three-dimensional three-phase three-component nonequilibrium flow in porous bodies described by three-velocity fields. Kernenergie 29, 383–392 (1986b)Google Scholar
  22. Kolev, N.I.: A three field-diffusion model of three-phase, three-component flow for the transient 3D-computer code IVA2/001. Nucl. Tech. 78, 95–131 (1987)Google Scholar
  23. Kolev, N.I.: Derivatives for the state equations of multi-component mixtures for universal multi-component flow models. Nucl. Sci. Eng. 108, 74–87 (1990)Google Scholar
  24. Kolev, N.I.: A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: conservation and state equations, numerics. KfK Report 4948 (September 1991a)Google Scholar
  25. Kolev, N.I.: IVA3: A transient 3D three-phase, three-component flow analyzer. In: Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21-25, pp. 171–180 (1991b); Presented at the 7th Meeting of the IAHR Working Group on Advanced Nuclear Reactor Thermal-Hydraulics, Kernforschungszentrum Karlsruhe, August 27-29 (1991)Google Scholar
  26. Kolev, N.I.: Fragmentation and coalescence dynamics in multi-phase flows. Exp. Thermal Fluid Sci. 6, 211–251 (1993a)CrossRefGoogle Scholar
  27. Kolev, N.I.: The code IVA3 for modelling of transient three-phase flows in complicated 3D geometry. Kerntechnik 58(3), 147–156 (1993b)Google Scholar
  28. Kolev, N.I.: IVA3 NW: Computer code for modeling of transient three phase flow in complicated 3D geometry connected with industrial networks. In: Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France, October 5-8 (1993c)Google Scholar
  29. Kolev, N.I.: Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasserkühlerrohrbruch. Projekt KKW Emsland, Siemens KWU Report R232/93/0002 (1993d)Google Scholar
  30. Kolev, N.I.: IVA3-NW A three phase flow network analyzer. Input description. Siemens KWU Report R232/93/E0041 (1993e)Google Scholar
  31. Kolev, N.I.: IVA3-NW Components: relief valves, pumps, heat structures. Siemens KWU Report R232/93/E0050 (1993f)Google Scholar
  32. Kolev, N.I.: The influence of the mutual bubble interaction on the bubble departure diameter. Exp. Thermal Fluid Sci. 8, 167–174 (1994a)CrossRefGoogle Scholar
  33. Kolev, N.I.: The code IVA4: Modeling of mass conservation in multi-phase multicomponent flows in heterogeneous porous media. Kerntechnik 59(4-5), 226–237 (1994b)Google Scholar
  34. Kolev, N.I.: Three fluid modeling with dynamic fragmentation and coalescence fiction or daily practice? In: 7th FARO Experts Group Meeting Ispra, October 15-16 (1996); Proceedings of OECD/CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements, Annapolis, MD, November 5-8 (1996); 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2-6 (1997); ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, British Columbia, June 22-26 (1997); Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22-24. Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan (1997)Google Scholar
  35. Kolev, N.I.: Can melt-water interaction jeopardize the containment integrity of the EPR? Part 3: Fragmentation and coalescence dynamics in multi-phase flows, KWU NAT/1998/E083a, Project EPR (1998)Google Scholar
  36. Kolev, N.I.: Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence – alumna experiments. In: CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CA, October 3-8 (1999); Log. Nr. 315Google Scholar
  37. Kolomentzev, A.I., Dushkin, A.L.: Vlianie teplovoj i dinamiceskoj neravnovesnosty faz na pokasatel adiabatj v dwuchfasnijh sredach. TE 8, 53–55 (1985)Google Scholar
  38. Mugele, R.A., Evans, H.D.: Droplet size distribution in sprays. Ing. Eng. Chem. 43, 1317–1324 (1951)CrossRefGoogle Scholar
  39. Nukiama, S., Tanasawa, Y.: Trans. Soc. Mech. Engrs. (Japan) 4(14), 86 (1931)Google Scholar
  40. Pilch, M., Erdman, C.A., Reynolds, A.B.: Acceleration induced fragmentation of liquid drops. Department of Nucl. Eng., University of Virginia, Charlottesville, VA, NUREG/CR-2247 (August 1981)Google Scholar
  41. Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The properties of gases and liquids, 3rd edn. McGraw–Hill Book Company, New York (1982)Google Scholar
  42. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Cambridge Phil. Trans., 123–164 (May 1894)Google Scholar
  43. Riznic, J.R., Ishii, M.: Bubble number density and vapor generation in flushing flow. Int. J. Heat Mass Transfer 32(10), 1821–1833 (1989)CrossRefGoogle Scholar
  44. Rosin, P., Rammler, E.: Laws governing the fineness of powdered coal. J. Inst. Fuel 7, 29–36 (1933)Google Scholar
  45. Sauter, J.: NACA Rept. TM-518 (1929)Google Scholar
  46. Serizawa, A., Kataoka, I., Michiyoshi, I.I.I.: Turbulence structure of air-water bubbly flow – I. Transport properties. Int. J. Multiphase Flow 2, 247–259 (1975)CrossRefGoogle Scholar
  47. Sha, T., Chao, B.T., Soo, S.L.: Porous-media formulation for multi-phase flow with heat transfer. Nucl. Eng. Des. 82, 93–106 (1984)CrossRefGoogle Scholar
  48. Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13, 1066 (1967)CrossRefGoogle Scholar
  49. Slattery, J.C.: Interfacial transport phenomena. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  50. Teletov, S.G.: On the problem of fluid dynamics of two-phase mixtures, I. Hydrodynamic and energy equations. Bull. Moscow Univ. (2), 15 (1958)Google Scholar
  51. Wallis, G.B.: One-dimensional two-phase flow. McGraw–Hill Book Company, New York (1969)Google Scholar
  52. Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13, 420 (1967)CrossRefGoogle Scholar
  53. Whitaker, S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61(12), 14–28 (1969)CrossRefGoogle Scholar
  54. Whitaker, S.: Experimental principles of heat transfer. Pergamon Press, New York (1977)Google Scholar
  55. Whitaker, S.: A simple geometrical derivation of the spatial averaging theorem. Chem. Eng. Edu., 50–52 (1985)Google Scholar
  56. Zemansky, M.W.: Heat and thermodynamics, 5th edn. McGraw-Hill Book Company, New York (1968)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.MöhrendorferstrHerzogenaurachGermany

Personalised recommendations