Skip to main content

The Intercalated Disc: A Focal Point for Sarcomere Growth and Disease

  • Chapter
  • First Online:
Cardiac Cytoarchitecture
  • 1057 Accesses

Abstract

Heart muscle cells are glued together end to end by the intercalated disc (ID), a complex junction fulfilling many functions; it transduces the forces of contraction and transmits electrical signals from one cell to the next; it mechanically holds the cells together and is the site of other signalling pathways including those involved in calcium homeostasis. This chapter aims to describe the functional roles of the ID with respect to the observed structure. Particular emphasis is given to the relationship between myofibrils and the ID, and the evidence for cell growth and sarcomere addition at the ID is presented. Because of its complex nature, it is not surprising that the ID has been implicated in a number of heart diseases and malfunctions. Changes in its structure and composition associated with these heart problems are described with special regard to the role of the ID in dilated cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angst BD, Khan LU et al (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 80(1):88–94

    CAS  PubMed  Google Scholar 

  • Arber S, Hunter JJ et al (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88(3):393–403

    CAS  PubMed  Google Scholar 

  • Arbustini E, Pasotti M et al (2006) Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail 8(5):477–483

    CAS  PubMed  Google Scholar 

  • Baines AJ, Lu HC et al (2014) The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta 1838(2):605–619

    CAS  PubMed  Google Scholar 

  • Bar H, Goudeau B et al (2007) Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal myopathies. Hum Mutat 28(4):374–386

    PubMed  Google Scholar 

  • Basso C, Czarnowska E et al (2006) Ultrastructural evidence of intercalated disc remodelling in arrhythmogenic right ventricular cardiomyopathy: an electron microscopy investigation on endomyocardial biopsies. Eur Heart J 27(15):1847–1854

    PubMed  Google Scholar 

  • Beinlich CJ, Rissinger CJ et al (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27(1):273–281

    CAS  PubMed  Google Scholar 

  • Beltrami CA, Finato N et al (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27(1):291–305

    CAS  PubMed  Google Scholar 

  • Bennett PM (2012) From myofibril to membrane; the transitional junction at the intercalated disc. Front Biosci (Landmark Ed) 17:1035–1050

    CAS  Google Scholar 

  • Bennett V, Healy J (2009) Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb Perspect Biol 1(6):a003012

    PubMed Central  PubMed  Google Scholar 

  • Bennett PM, Maggs AM et al (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17(4):2091–2100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benz PM, Merkel CJ et al (2013) Mena/VASP and alphaII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy. Cell Commun Signal 11:56

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bergmann O, Bhardwaj RD et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bishop SP, Oparil S et al (1979) Regional myocyte size in normotensive and spontaneously hypertensive rats. Hypertension 1(4):378–383

    CAS  PubMed  Google Scholar 

  • Borrmann CM, Grund C et al (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 85(6):469–485

    CAS  PubMed  Google Scholar 

  • Capetanaki Y, Milner DJ (1998) Desmin cytoskeleton in muscle integrity and function. Subcell Biochem 31:463–495

    CAS  PubMed  Google Scholar 

  • Capetanaki Y, Milner DJ et al (1997) Desmin in muscle formation and maintenance: knockouts and consequences. Cell Struct Funct 22(1):103–116

    CAS  PubMed  Google Scholar 

  • Craig SW, Pardo JV (1983) Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil 3(5–6):449–462

    CAS  PubMed  Google Scholar 

  • Crawford GL, Horowits R (2011) Scaffolds and chaperones in myofibril assembly: putting the striations in striated muscle. Biophys Rev 3(1):25–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dagvadorj A, Olive M et al (2004) A series of West European patients with severe cardiac and skeletal myopathy associated with a de novo R406W mutation in desmin. J Neurol 251(2):143–149

    CAS  PubMed  Google Scholar 

  • Dix DJ, Eisenberg BR (1990) Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J Cell Biol 111(5 Pt 1):1885–1894

    CAS  PubMed  Google Scholar 

  • Dusek RL, Godsel LM et al (2007) Discriminating roles of desmosomal cadherins: beyond desmosomal adhesion. J Dermatol Sci 45(1):7–21

    CAS  PubMed  Google Scholar 

  • Ehler E, Rothen BM et al (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 112(Pt 10):1529–1539

    CAS  PubMed  Google Scholar 

  • Ehler E, Horowits R et al (2001) Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 153(4):763–772

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ehler E, Fowler VM et al (2004) Myofibrillogenesis in the developing chicken heart: role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev Dyn 229(4):745–755

    CAS  PubMed  Google Scholar 

  • Eigenthaler M, Engelhardt S et al (2003) Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 285(6):H2471–H2481

    CAS  PubMed  Google Scholar 

  • Estigoy CB, Pontén F et al (2009) Intercalated discs: multiple proteins perform multiple functions in non-failing and failing human hearts. Biophys Rev 1:43–49

    CAS  Google Scholar 

  • Faulkner G, Pallavicini A et al (1999) ZASP: a new Z-band alternatively spliced PDZ-motif protein. J Cell Biol 146(2):465–475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faulkner G, Pallavicini A et al (2000) FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J Biol Chem 275(52):41234–41242

    CAS  PubMed  Google Scholar 

  • Fawcett DW, McNutt NS (1969) The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol 42(1):1–45

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira-Cornwell MC, Luo Y et al (2002) Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci 115(Pt 8):1623–1634

    CAS  PubMed  Google Scholar 

  • Forbes MS, Sperelakis N (1985) Intercalated discs of mammalian heart: a review of structure and function. Tissue Cell 17(5):605–648

    CAS  PubMed  Google Scholar 

  • Franke WW, Borrmann CM et al (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85(2):69–82

    CAS  PubMed  Google Scholar 

  • Frenzel H, Schwartzkopff B et al (1988) Regression of cardiac hypertrophy: morphometric and biochemical studies in rat heart after swimming training. J Mol Cell Cardiol 20(8):737–751

    CAS  PubMed  Google Scholar 

  • Frey N, Olson EN (2002) Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J Biol Chem 277(16):13998–14004

    CAS  PubMed  Google Scholar 

  • Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778(3):572–587

    CAS  PubMed  Google Scholar 

  • Gautel M (2011) The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 23(1):39–46

    CAS  PubMed  Google Scholar 

  • Gehmlich K, Syrris P et al (2012) Molecular changes in the heart of a severe case of arrhythmogenic right ventricular cardiomyopathy caused by a desmoglein-2 null allele. Cardiovasc Pathol 21(4):275–282

    CAS  PubMed  Google Scholar 

  • Gerdes AM (2002) Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8(6 Suppl):S264–S268

    PubMed  Google Scholar 

  • Gerdes AM, Capasso JM (1995) Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. J Mol Cell Cardiol 27(3):849–856

    CAS  PubMed  Google Scholar 

  • Gerdes AM, Kellerman SE et al (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86(2):426–430

    CAS  PubMed  Google Scholar 

  • Goldfarb LG, Vicart P et al (2004) Desmin myopathy. Brain 127(Pt 4):723–734

    CAS  PubMed  Google Scholar 

  • Goossens S, Janssens B et al (2007) A unique and specific interaction between alphaT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J Cell Sci 120(Pt 12):2126–2136

    CAS  PubMed  Google Scholar 

  • Granger BL, Lazarides E (1978) The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell 15(4):1253–1268

    CAS  PubMed  Google Scholar 

  • Gregorio CC, Antin PB (2000) To the heart of myofibril assembly. Trends Cell Biol 10(9):355–362

    CAS  PubMed  Google Scholar 

  • Gregorio CC, Trombitas K et al (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 143(4):1013–1027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herve JC, Bourmeyster N et al (2007) Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94(1–2):29–65

    CAS  PubMed  Google Scholar 

  • Hirschy A, Schatzmann F et al (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289(2):430–441

    CAS  PubMed  Google Scholar 

  • Hirschy A, Croquelois A et al (2010) Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. Basic Res Cardiol 105(5):597–608

    CAS  PubMed  Google Scholar 

  • Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61(2):392–398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter AW, Barker RJ et al (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16(12):5686–5698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iskratsch T, Lange S et al (2010) Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. J Cell Biol 191(6):1159–1172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaminska A, Strelkov SV et al (2004) Small deletions disturb desmin architecture leading to breakdown of muscle cells and development of skeletal or cardioskeletal myopathy. Hum Genet 114(3):306–313

    CAS  PubMed  Google Scholar 

  • Kobielak A, Pasolli HA et al (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6(1):21–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Ackermann MA et al (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89(4):1217–1267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kostin S, Scholz D et al (1998) The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res 294(3):449–460

    CAS  PubMed  Google Scholar 

  • Lahtinen AM, Lehtonen E et al (2011) Population-prevalent desmosomal mutations predisposing to arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 8(8):1214–1221

    PubMed  Google Scholar 

  • Leu M, Ehler E et al (2001) Characterisation of postnatal growth of the murine heart. Anat Embryol (Berl) 204(3):217–224

    CAS  Google Scholar 

  • Li J, Radice GL (2010) A new perspective on intercalated disc organization: implications for heart disease. Dermatol Res Pract 2010:207835

    PubMed Central  PubMed  Google Scholar 

  • Li F, Wang X et al (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746

    CAS  PubMed  Google Scholar 

  • Li F, McNelis MR et al (1997) Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching development. Am J Physiol 273(2 Pt 2):R518–R526

    CAS  PubMed  Google Scholar 

  • Luo G, Zhang JQ et al (1997) Complete cDNA sequence and tissue localization of N-RAP, a novel nebulin-related protein of striated muscle. Cell Motil Cytoskeleton 38(1):75–90

    CAS  PubMed  Google Scholar 

  • Lyon AR, MacLeod KT et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106(16):6854–6859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manisastry SM, Zaal KJ et al (2009) Myofibril assembly visualized by imaging N-RAP, alpha-actinin, and actin in living cardiomyocytes. Exp Cell Res 315(12):2126–2139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mansour H, de Tombe PP et al (2004) Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and focal adhesion kinase. Circ Res 94(5):642–649

    CAS  PubMed  Google Scholar 

  • Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381(9862):242–255

    PubMed  Google Scholar 

  • Maron BJ, Pelliccia A (2006) The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation 114(15):1633–1644

    PubMed  Google Scholar 

  • Masuelli L, Bei R et al (2003) Beta-catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovasc Res 60(2):376–387

    CAS  PubMed  Google Scholar 

  • McNutt NS, Fawcett DW (1969) The ultrastructure of the cat myocardium. II. Atrial muscle. J Cell Biol 42(1):46–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milner DJ, Weitzer G et al (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134(5):1255–1270

    CAS  PubMed  Google Scholar 

  • Milner DJ, Taffet GE et al (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31(11):2063–2076

    CAS  PubMed  Google Scholar 

  • Milner DJ, Mavroidis M et al (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6):1283–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miquerol L, Kelly RG (2013) Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol 2(1):17–29

    CAS  PubMed  Google Scholar 

  • Mohler PJ, Rivolta I et al (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A 101(50):17533–17538

    PubMed Central  CAS  PubMed  Google Scholar 

  • North AJ, Bardsley WG et al (1999) Molecular map of the desmosomal plaque. J Cell Sci 112(Pt 23):4325–4336

    CAS  PubMed  Google Scholar 

  • Pardo JV, Siliciano JD et al (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A 80(4):1008–1012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Passier R, Richardson JA et al (2000) Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle. Mech Dev 92(2):277–284

    CAS  PubMed  Google Scholar 

  • Perriard JC, Hirschy A et al (2003) Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med 13(1):30–38

    PubMed  Google Scholar 

  • Pieperhoff S, Franke WW (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates—IV: coalescence and amalgamation of desmosomal and adhaerens junction components—late processes in mammalian heart development. Eur J Cell Biol 86(7):377–391

    CAS  PubMed  Google Scholar 

  • Pinder JC, Taylor-Harris PM et al (2012) Isoforms of protein 4.1 are differentially distributed in heart muscle cells: relation of 4.1R and 4.1G to components of the Ca2+ homeostasis system. Exp Cell Res 318(13):1467–1479

    CAS  PubMed  Google Scholar 

  • Pizon V, Iakovenko A et al (2002) Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 115(Pt 23):4469–4482

    CAS  PubMed  Google Scholar 

  • Poole-Wilson PA (1995) The dimensions of human cardiac myocytes; confusion caused by methodology and pathology. J Mol Cell Cardiol 27(3):863–865

    CAS  PubMed  Google Scholar 

  • Porrello ER, Mahmoud AI et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Radice GL, Rayburn H et al (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1):64–78

    CAS  PubMed  Google Scholar 

  • Randall TS, Ehler E (2013) A formin-g role during development and disease. Eur J Cell Biol 93(5–6):205–211

    PubMed  Google Scholar 

  • Russell B, Curtis MW et al (2010) Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 48(5):817–823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanger JW, Kang S et al (2005) How to build a myofibril. J Muscle Res Cell Motil 26(6–8):343–354

    PubMed  Google Scholar 

  • Sasaki R, Watanabe Y et al (1968) Estimation of the cell number of heart muscles in normal rats. Tohoku J Exp Med 95(2):177–184

    CAS  PubMed  Google Scholar 

  • Schoenauer R, Emmert MY et al (2011) EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol 106(2):233–247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sepp R, Severs NJ et al (1996) Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart 76(5):412–417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Severs NJ, Coppen SR et al (2004) Gap junction alterations in human cardiac disease. Cardiovasc Res 62(2):368–377

    CAS  PubMed  Google Scholar 

  • Sheikh F, Chen Y et al (2006) alpha-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture. Circulation 114(10):1046–1055

    CAS  PubMed  Google Scholar 

  • Sheikh F, Bang ML et al (2007) “Z”eroing in on the role of Cypher in striated muscle function, signaling, and human disease. Trends Cardiovasc Med 17(8):258–262

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheikh F, Ross RS et al (2009) Cell-cell connection to cardiac disease. Trends Cardiovasc Med 19(6):182–190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SH, Bishop SP (1985) Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J Mol Cell Cardiol 17(10):1005–1011

    CAS  PubMed  Google Scholar 

  • Smith JH, Green CR et al (1991) Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol 139(4):801–821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stagg MA, Carter E et al (2008) Cytoskeletal protein 4.1R affects repolarization and regulates calcium handling in the heart. Circ Res 103(8):855–863

    CAS  PubMed  Google Scholar 

  • Stevenson SA, Cullen MJ et al (2005) High-resolution en-face visualization of the cardiomyocyte plasma membrane reveals distinctive distributions of spectrin and dystrophin. Eur J Cell Biol 84(12):961–971

    CAS  PubMed  Google Scholar 

  • Takada F, Vander Woude DL et al (2001) Myozenin: an alpha-actinin- and gamma-filamin-binding protein of skeletal muscle Z lines. Proc Natl Acad Sci U S A 98(4):1595–1600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takeda K, Yu ZX et al (2000) Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil Cytoskeleton 46(1):59–68

    CAS  PubMed  Google Scholar 

  • Thornell L, Carlsson L et al (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29(8):2107–2124

    CAS  PubMed  Google Scholar 

  • Tidball JG (1983) The geometry of actin filament-membrane associations can modify adhesive strength of the myotendinous junction. Cell Motil 3(5–6):439–447

    CAS  PubMed  Google Scholar 

  • Valle G, Faulkner G et al (1997) Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 415(2):163–168

    CAS  PubMed  Google Scholar 

  • van den Bosch BJ, van den Burg CM et al (2005) Regional absence of mitochondria causing energy depletion in the myocardium of muscle LIM protein knockout mice. Cardiovasc Res 65(2):411–418

    PubMed  Google Scholar 

  • Van der Ven PF, Ehler E et al (1999) Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J Muscle Res Cell Motil 20(5–6):569–579

    CAS  PubMed  Google Scholar 

  • van der Ven PF, Obermann WM et al (2000) Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil Cytoskeleton 45(2):149–162

    PubMed  Google Scholar 

  • van der Ven PF, Ehler E et al (2006) Unusual splicing events result in distinct Xin isoforms that associate differentially with filamin c and Mena/VASP. Exp Cell Res 312(11):2154–2167

    PubMed  Google Scholar 

  • Vasile VC, Edwards WD et al (2006) Obstructive hypertrophic cardiomyopathy is associated with reduced expression of vinculin in the intercalated disc. Biochem Biophys Res Commun 349(2):709–715

    CAS  PubMed  Google Scholar 

  • Vatta M, Mohapatra B et al (2003) Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 42(11):2014–2027

    CAS  PubMed  Google Scholar 

  • Wang D, Shah KR et al (2014) Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths. Forensic Sci Int 237:90–99

    CAS  PubMed  Google Scholar 

  • Wilding JR, Joubert F et al (2006) Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 575(Pt 1):191–200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams PE, Goldspink G (1971) Longitudinal growth of striated muscle fibres. J Cell Sci 9(3):751–767

    CAS  PubMed  Google Scholar 

  • Willis MS, Schisler JC et al (2009) Build it up-Tear it down: protein quality control in the cardiac sarcomere. Cardiovasc Res 81(3):439–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson AJ, Schoenauer R et al (2014) Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci 71(1):165–181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xing Y, Ichida F et al (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Yamano S et al (1988) Polarity and length of actin filaments at the fascia adherens of the cardiac intercalated disk. J Ultrastruct Mol Struct Res 100(3):235–244

    CAS  PubMed  Google Scholar 

  • Yoshida M, Sho E et al (2010) Weaving hypothesis of cardiomyocyte sarcomeres: discovery of periodic broadening and narrowing of intercalated disk during volume-load change. Am J Pathol 176(2):660–678

    PubMed Central  PubMed  Google Scholar 

  • Yu JG, Russell B (2005) Cardiomyocyte remodeling and sarcomere addition after uniaxial static strain in vitro. J Histochem Cytochem 53(7):839–844

    CAS  PubMed  Google Scholar 

  • Yu JG, Carlsson L et al (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem Cell Biol 121(3):219–227

    CAS  PubMed  Google Scholar 

  • Zemljic-Harpf AE, Miller JC et al (2007) Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 27(21):7522–7537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JQ, Elzey B et al (2001) Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart. Biochemistry 40(49):14898–14906

    CAS  PubMed  Google Scholar 

  • Zhou Q, Ruiz-Lozano P et al (1999) Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 274(28):19807–19813

    CAS  PubMed  Google Scholar 

  • Zhurinsky J, Shtutman M et al (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18):3127–3139

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bennett, P.M. (2015). The Intercalated Disc: A Focal Point for Sarcomere Growth and Disease. In: Ehler, E. (eds) Cardiac Cytoarchitecture. Springer, Cham. https://doi.org/10.1007/978-3-319-15263-9_3

Download citation

Publish with us

Policies and ethics