Skip to main content

In Vitro Tools for Quantifying Structure–Function Relationships in Cardiac Myocyte Cells and Tissues

  • Chapter
  • First Online:
Cardiac Cytoarchitecture

Abstract

The heart is a dynamic, electrically activated, chemically sensitive, mechanical pump with a regular rhythm that must operate without interruption for decades. The function of the heart is an emergent property of highly organized structures that span multiple spatial scales (Fig. 2.1). On the organ level, the heart is divided into four chambers. Two of these chambers, the ventricles, are thick-walled muscular chambers that are particularly constructed to work as pressure pumps and contract in a twisting manner to efficiently squeeze blood from the chamber. The walls of the ventricle comprise layers of two-dimensional sheets of laminar cardiac tissue. The tissue itself consists of highly aligned, elongated, cylindrical cardiac myocytes. Cardiac myocytes are spanned by parallel bundles of myofibrils, which consist of repeating sarcomere units. Sarcomeres are nanoscale structures composed of thick myosin filaments and thin actin filaments that slide past each other and shorten the sarcomere in response to an action potential. Because all sarcomeres within a cell are aligned, and all cells in a tissue are aligned, the amount of uniaxial force generated by the tissue as a whole is maximized due to its multi-scale organization. To achieve synchronous contraction, myocytes couple together via specialized cell–cell junctions, known as intercalated discs, which provide both mechanical adhesion and rapid electrical communication. Thus, the pumping function of the heart, which is multiple centimeters in diameter, is dependent on spatial organization that spans all the way down to the nanoscale. In this chapter, we will describe the role of the structure of single cardiac myocytes, cell–cell junctions, and multicellular tissues in the function of the healthy heart and how these structure–function relationships become disrupted in disease. We will focus on studies that have used in vitro tools to mimic different architectures observed in developing, healthy, and diseased hearts and make functional readouts in a controlled setting.

The multi-scale structure of the heart. The function of the heart is dependent on its hierarchical architecture, which spans organ, tissue, cellular, and molecular levels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal A, Farouz Y, Nesmith AP, Deravi LF, McCain ML, Parker KK (2013a) Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv Funct Mater 23(30):3738–3746

    Article  CAS  Google Scholar 

  • Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013b) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmad F, Seidman JG, Seidman CE (2005) The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet 6:185–216

    Article  CAS  PubMed  Google Scholar 

  • Amado LC, Saliaris AP, Schuleri KH, St. John M, Xie J-S, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102(32):11474–11479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI, Gourdie RG (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 80(1):88–94

    Article  CAS  PubMed  Google Scholar 

  • Antz M, Otomo K, Arruda M, Scherlag BJ, Pitha J, Tondo C, Lazzara R, Jackman WM (1998) Electrical conduction between the right atrium and the left atrium via the musculature of the coronary sinus. Circulation 98(17):1790–1795

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113(11):1451–1463

    Article  PubMed  Google Scholar 

  • Atherton BT, Meyer DM, Simpson DG (1986) Assembly and remodelling of myofibrils and intercalated discs in cultured neonatal rat heart cells. J Cell Sci 86:233–248

    CAS  PubMed  Google Scholar 

  • Auman HJ, Coleman H, Riley HE, Olale F, Tsai HJ, Yelon D (2007) Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol 5(3):e53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Badrossamay MR, Balachandran K, Capulli AK, Golecki HM, Agarwal A, Goss JA, Kim H, Shin K, Parker KK (2014) Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 35(10):3188–3197

    Article  CAS  PubMed  Google Scholar 

  • Baharvand H, Azarnia M, Parivar K, Ashtiani SK (2005) The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol 38(3):495–503

    Article  CAS  PubMed  Google Scholar 

  • Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95(4):1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp P, Choby C, Desplantez T, de Peyer K, Green K, Yamada KA, Weingart R, Saffitz JE, Kleber AG (2004) Electrical propagation in synthetic ventricular myocyte strands from germline connexin43 knockout mice. Circ Res 95(2):170–178

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp P, Desplantez T, McCain ML, Li W, Asimaki A, Rigoli G, Parker KK, Saffitz JE, Kleber AG (2012) Electrical coupling and propagation in engineered ventricular myocardium with heterogeneous expression of connexin43. Circ Res 110(11):1445–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beauchamp P, Yamada KA, Baertschi AJ, Green K, Kanter EM, Saffitz JE, Kleber AG (2006) Relative contributions of connexins 40 and 43 to atrial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes. Circ Res 99(11):1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117(3):568–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203

    Article  CAS  PubMed  Google Scholar 

  • Boateng SY, Goldspink PH (2008) Assembly and maintenance of the sarcomere night and day. Cardiovasc Res 77(4):667–675

    Article  CAS  PubMed  Google Scholar 

  • Borg TK, Gay RE, Johnson LD (1982) Changes in the distribution of fibronectin and collagen during development of the neonatal rat heart. Coll Relat Res 2(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18(9–10):910–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(2):107–116

    Article  CAS  PubMed  Google Scholar 

  • Bray MA, Sheehy SP, Parker KK (2008) Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton 65(8):641–651

    Article  PubMed  Google Scholar 

  • Bullard TA, Borg TK, Price RL (2005) The expression and role of protein kinase C in neonatal cardiac myocyte attachment, cell volume, and myofibril formation is dependent on the composition of the extracellular matrix. Microsc Microanal 11(3):224–234

    Article  CAS  PubMed  Google Scholar 

  • Bursac N, Aguel F, Tung L (2004) Multiarm spirals in a two-dimensional cardiac substrate. Proc Natl Acad Sci U S A 101(43):15530–15534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bursac N, Parker KK, Iravanian S, Tung L (2002) Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ Res 91(12):e45–e54

    Article  CAS  PubMed  Google Scholar 

  • Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605

    Article  CAS  PubMed  Google Scholar 

  • Cabo C, Yao J, Boyden PA, Chen S, Hussain W, Duffy HS, Ciaccio EJ, Peters NS, Wit AL (2006) Heterogeneous gap junction remodeling in reentrant circuits in the epicardial border zone of the healing canine infarct. Cardiovasc Res 72(2):241–249

    Article  CAS  PubMed  Google Scholar 

  • Carey PA, Turner M, Fry CH, Sheridan DJ (2001) Reduced anisotropy of action potential conduction in left ventricular hypertrophy. J Cardiovasc Electrophysiol 12(7):830–835

    Article  CAS  PubMed  Google Scholar 

  • Carver W, Price RL, Raso DS, Terracio L, Borg TK (1994) Distribution of beta-1 integrin in the developing rat heart. J Histochem Cytochem 42(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib I, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):10

    Article  CAS  Google Scholar 

  • Chaturvedi RR, Herron T, Simmons R, Shore D, Kumar P, Sethia B, Chua F, Vassiliadis E, Kentish JC (2010) Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121(8):979–988

    Article  PubMed  Google Scholar 

  • Chen A, Lieu DK, Freschauf L, Lew V, Sharma H, Wang J, Nguyen D, Karakikes I, Hajjar RJ, Gopinathan A, Botvinick E, Fowlkes CC, Li RA, Khine M (2011) Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv Mater 23(48):5785–5791

    Article  CAS  PubMed  Google Scholar 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428

    Article  CAS  PubMed  Google Scholar 

  • Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6:275–302

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu W, Zhang H, Lacy L, Yang X, Song S-K, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–H1907

    Article  CAS  PubMed  Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung CY, Bien H, Sobie EA, Dasari V, McKinnon D, Rosati B, Entcheva E (2011) Hypertrophic phenotype in cardiac cell assemblies solely by structural cues and ensuing self-organization. FASEB J 25(3):851–862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corda S, Samuel JL, Rappaport L (2000) Extracellular matrix and growth factors during heart growth. Heart Fail Rev 5(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A 94(17):9493–9498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desplantez T, McCain ML, Beauchamp P, Rigoli G, Rothen-Rutishauser B, Parker KK, Kleber AG (2012) Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc Res 94(1):58–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22(10):686–695

    Article  CAS  PubMed  Google Scholar 

  • Domian IJ, Chiravuri M, van der Meer P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, Chien KR (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326(5951):426–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257(2):382–394

    Article  CAS  PubMed  Google Scholar 

  • Du A, Sanger JM, Sanger JW (2008) Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol 318(2):236–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan Y, Liu Z, O’Neill J, Wan LQ, Freytes DO, Vunjak-Novakovic G (2011) Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res 4(5):605–615

    Article  PubMed Central  PubMed  Google Scholar 

  • Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33(2):359–371

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Ehler E, Rothen BM, Hammerle SP, Komiyama M, Perriard JC (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 112(Pt 10):1529–1539

    CAS  PubMed  Google Scholar 

  • Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(Pt 22):3794–3802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL (1995) Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27(4):981–990

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Darrow BJ, Saffitz JE, Kleber AG (1996) Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Circ Res 79(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Kleber AG (1993) Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ Res 73(5):914–925

    Article  CAS  PubMed  Google Scholar 

  • Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39(6):1477–1487

    Article  PubMed  Google Scholar 

  • Feher JJ (2012) Quantitative human physiology: an introduction. Elsevier/Academic Press, London

    Google Scholar 

  • Feild BJ, Baxley WA, Russell RO Jr, Hood WP Jr, Holt JH, Dowling JT, Rackley CE (1973) Left ventricular function and hypertrophy in cardiomyopathy with depressed ejection fraction. Circulation 47(5):1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AW, Alford PW, Jin H, Ripplinger CM, Werdich AA, Sheehy SP, Grosberg A, Parker KK (2012) Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33(23):5732–5741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK (2007) Muscular thin films for building actuators and powering devices. Science 317(5843):1366–1370

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AW, Ripplinger CM, van der Meer P, Sheehy SP, Domian I, Chien KR, Parker KK (2013) Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Rep 1(5):387–396

    Article  CAS  Google Scholar 

  • Ferri N, Siegl P, Corsini A, Herrmann J, Lerman A, Benghozi R (2013) Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity. Pharmacol Ther 138(3):470–484

    Article  CAS  PubMed  Google Scholar 

  • Forte G, Pagliari S, Ebara M, Uto K, Tam JK, Romanazzo S, Escobedo-Lucea C, Romano E, Di Nardo P, Traversa E, Aoyagi T (2012) Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A 18(17–18):1837–1848

    Article  CAS  PubMed  Google Scholar 

  • Galie PA, Khalid N, Carnahan KE, Westfall MV, Stegemann JP (2013) Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol 22(3):219–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geisler SB, Green KJ, Isom LL, Meshinchi S, Martens JR, Delmar M, Russell MW (2010) Ordered assembly of the adhesive and electrochemical connections within newly formed intercalated disks in primary cultures of adult rat cardiomyocytes. J Biomed Biotechnol 2010:624719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Geisse NA, Sheehy SP, Parker KK (2009) Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cell Dev Biol Anim 45(7):343–350

    Article  PubMed  Google Scholar 

  • Gerdes AM (1992) Remodeling of ventricular myocytes during cardiac hypertrophy and heart failure. J Fla Med Assoc 79(4):253–255

    CAS  PubMed  Google Scholar 

  • Gerdes AM (2002) Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8(6 Suppl):S264–S268

    Article  PubMed  Google Scholar 

  • Grosberg A, Alford PW, McCain ML, Parker KK (2011a) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK (2011b) Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2):e1001088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK (2012) Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65(3):126–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (2000) Textbook of medical physiology, 10th edn. W.B. Saunders Company, New York

    Google Scholar 

  • Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Herberts C, Kwa M, Hermsen H (2011) Risk factors in the development of stem cell therapy. J Transl Med 9(1):29

    Article  PubMed Central  PubMed  Google Scholar 

  • Hertig CM, Butz S, Koch S, Eppenberger-Eberhardt M, Kemler R, Eppenberger HM (1996) N-cadherin in adult rat cardiomyocytes in culture. II. Spatio-temporal appearance of proteins involved in cell-cell contact and communication. Formation of two distinct N-cadherin/catenin complexes. J Cell Sci 109(Pt 1):11–20

    CAS  PubMed  Google Scholar 

  • Hilenski LL, Terracio L, Borg TK (1991) Myofibrillar and cytoskeletal assembly in neonatal rat cardiac myocytes cultured on laminin and collagen. Cell Tissue Res 264(3):577–587

    Article  CAS  PubMed  Google Scholar 

  • Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289(2):430–441

    Article  CAS  PubMed  Google Scholar 

  • Ho C (2009) Hypertrophic cardiomyopathy: preclinical and early phenotype. J Cardiovasc Transl Res 2(4):462–470

    Article  PubMed  Google Scholar 

  • Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Colan SD, Seidman JG, Diez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363(6):552–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hornberger LK, Singhroy S, Cavalle-Garrido T, Tsang W, Keeley F, Rabinovitch M (2000) Synthesis of extracellular matrix and adhesion through beta(1) integrins are critical for fetal ventricular myocyte proliferation. Circ Res 87(6):508–515

    Article  CAS  PubMed  Google Scholar 

  • Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177

    Article  CAS  PubMed  Google Scholar 

  • Hucker WJ, Nikolski VP, Efimov IR (2005) Optical mapping of the atrioventricular junction. J Electrocardiol 38(4 Suppl):121–125

    Article  PubMed  Google Scholar 

  • Humphrey JD (2010) Cardiovascular solid mechanics: cells, tissues, and organs. Springer New York, NY

    Google Scholar 

  • Humphries MJ (2000) Integrin structure. Biochem Soc Trans 28(4):311–339

    Article  CAS  PubMed  Google Scholar 

  • Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95(7):3479–3487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jane-Lise S, Corda S, Chassagne C, Rappaport L (2000) The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 5(3):239–250

    Article  CAS  PubMed  Google Scholar 

  • Kanter HL, Saffitz JE, Beyer EC (1992) Cardiac myocytes express multiple gap junction proteins. Circ Res 70(2):438–444

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494(7435):105–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 107(2):565–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Asthagiri AR (2011) Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J Cell Sci 124(Pt 8):1280–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konstandin MH, Toko H, Gastelum GM, Quijada P, De La Torre A, Quintana M, Collins B, Din S, Avitabile D, Volkers M, Gude N, Fassler R, Sussman MA (2013) Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circ Res 113(2):115–125

    Article  CAS  PubMed  Google Scholar 

  • Kostin S, Hein S, Bauer EP, Schaper J (1999) Spatiotemporal development and distribution of intercellular junctions in adult rat cardiomyocytes in culture. Circ Res 85(2):154–167

    Article  CAS  PubMed  Google Scholar 

  • Kostin S, Rieger M, Dammer S, Hein S, Richter M, Klovekorn WP, Bauer EP, Schaper J (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242(1–2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Kuo PL, Lee H, Bray MA, Geisse NA, Huang YT, Adams WJ, Sheehy SP, Parker KK (2012) Myocyte shape regulates lateral registry of sarcomeres and contractility. Am J Pathol 181(6):2030–2037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Patel VV, Radice GL (2006) Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis. Clin Med Res 4(1):42–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107(22):9944–9949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4:2307

    PubMed  Google Scholar 

  • Lundgren E, Terracio L, Mardh S, Borg TK (1985) Extracellular matrix components influence the survival of adult cardiac myocytes in vitro. Exp Cell Res 158(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Lundy SD, Zhu WZ, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22(14):1991–2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE (2013) Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr Biol 23(23):2434–2439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 108(12):4708–4713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuda T, Takahashi K, Nariai T, Ito T, Takatani T, Fujio Y, Azuma J (2004) N-cadherin-mediated cell adhesion determines the plasticity for cell alignment in response to mechanical stretch in cultured cardiomyocytes. Biochem Biophys Res Commun 326(1):228–232

    Article  CAS  Google Scholar 

  • Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T (1999) Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85(11):1046–1055

    Article  CAS  PubMed  Google Scholar 

  • McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK (2014a) Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35(21):5462–5471

    Article  CAS  PubMed  Google Scholar 

  • McCain ML, Desplantez T, Geisse NA, Rothen-Rutishauser B, Oberer H, Parker KK, Kleber AG (2012a) Cell-to-cell coupling in engineered pairs of rat ventricular cardiomyocytes: relation between Cx43 immunofluorescence and intercellular electrical conductance. Am J Physiol Heart Circ Physiol 302(2):H443–H450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCain ML, Desplantez T, Kleber AG (2014b) Engineering cardiac cell junctions in vitro to study the intercalated disc. Cell Commun Adhes 21(3):181–191

    Article  CAS  PubMed  Google Scholar 

  • McCain ML, Lee H, Aratyn-Schaus Y, Kleber AG, Parker KK (2012b) Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. Proc Natl Acad Sci U S A 109(25):9881–9886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCain ML, Sheehy S, Grosberg A, Goss JA, Parker KK (2013) Recapitulating maladaptive, mulitscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A 110(24):6

    Article  Google Scholar 

  • McCain ML, Yuan H, Pasqualini FS, Campbell PH, Parker KK (2014c) Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am J Physiol Heart Circ Physiol 306(11):H1525–H1539

    Article  CAS  PubMed  Google Scholar 

  • Mirica SN, Ordodi V, Apostol A, Ana D, Răducan A, Duicu O, Hâncu M, Ivan V, Muntean D (2009) Langendorff perfused heart – the 110 years old experimental model that gets better with age. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series) 19(1):81–86

    Google Scholar 

  • Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110(4):1446–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, Jalife J (1999) Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol 10(10):1361–1375

    Article  CAS  PubMed  Google Scholar 

  • Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, Shirato K (1999) Differential expression of alpha 1, alpha 3 and alpha 5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res 43(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Noorman M, van der Heyden MA, van Veen TA, Cox MG, Hauer RN, de Bakker JM, van Rijen HV (2009) Cardiac cell-cell junctions in health and disease: electrical versus mechanical coupling. J Mol Cell Cardiol 47(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):9

    Article  CAS  Google Scholar 

  • Parker KK, Ingber DE (2007) Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B Biol Sci 362(1484):1267–1279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedrotty DM, Klinger RY, Badie N, Hinds S, Kardashian A, Bursac N (2008) Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am J Physiol Heart Circ Physiol 295(1):H390–H400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3(4):719–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101(52):18129–18134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Robertson C, Tran DD, George SC (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31(5):829–837

    Article  CAS  PubMed  Google Scholar 

  • Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45(4):567–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88(11):1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Salameh A, Wustmann A, Karl S, Blanke K, Apel D, Rojas-Gomez D, Franke H, Mohr FW, Janousek J, Dhein S (2010) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106(10):1592–1602

    Article  CAS  PubMed  Google Scholar 

  • Samuel JL, Farhadian F, Sabri A, Marotte F, Robert V, Rappaport L (1994) Expression of fibronectin during rat fetal and postnatal development: an in situ hybridisation and immunohistochemical study. Cardiovasc Res 28(11):1653–1661

    Article  CAS  PubMed  Google Scholar 

  • Sanger JM, Mittal B, Pochapin MB, Sanger JW (1986) Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 102(6):2053–2066

    Article  CAS  PubMed  Google Scholar 

  • Severs NJ (2002) Gap junction remodeling in heart failure. J Card Fail 8(6 Suppl):S293–S299

    Article  PubMed  Google Scholar 

  • Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R, Sharpey K, Fry CH (2006) Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42:228–242

    Article  CAS  PubMed  Google Scholar 

  • Sharp WW, Terracio L, Borg TK, Samarel AM (1993) Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Circ Res 73(1):172–183

    Article  CAS  PubMed  Google Scholar 

  • Sheehy S, Francesco P, Grosberg A, Park SJ, Aratyn-Schaus Y, Parker KK (2014a) Quality metrics for stem cell-derived cardiac myocytes. Nat Biotechnol 2(3):282–294

    CAS  Google Scholar 

  • Sheehy SP, Pasqualini F, Grosberg A, Park SJ, Aratyn-Schaus Y, Parker KK (2014b) Quality metrics for stem cell-derived cardiac myocytes. Stem Cell Rep 2(3):282–294

    Article  CAS  Google Scholar 

  • Simpson DG, Decker ML, Clark WA, Decker RS (1993) Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes. J Cell Biol 123(2):323–336

    Article  CAS  PubMed  Google Scholar 

  • Simpson DG, Sharp WW, Borg TK, Price RL, Terracio L, Samarel AM (1996) Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure. Am J Physiol 270(4 Pt 1):C1075–C1087

    CAS  PubMed  Google Scholar 

  • Sirenko O, Crittenden C, Callamaras N, Hesley J, Chen YW, Funes C, Rusyn I, Anson B, Cromwell EF (2013) Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. J Biomol Screen 18(1):39–53

    Article  CAS  PubMed  Google Scholar 

  • Spach MS, Heidlage JF, Barr RC, Dolber PC (2004) Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1(4):500–515

    Article  PubMed  Google Scholar 

  • Sreejit P, Verma RS (2013) Enhanced cardiomyogenic lineage differentiation of adult bone-marrow-derived stem cells grown on cardiogel. Cell Tissue Res 353(3):443–456

    Article  CAS  PubMed  Google Scholar 

  • Stewart JA Jr, Gardner JD, Brower GL, Janicki JS (2014) Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats. Am J Physiol Heart Circ Physiol 306(1):H101–H108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan JL, Liu W, Nelson CM, Raghavan S, Chen CS (2004) Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 10(5–6):865–872

    Article  CAS  PubMed  Google Scholar 

  • Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK (1991) Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68(3):734–744

    Article  CAS  PubMed  Google Scholar 

  • Thavandiran N, Dubois N, Mikryukov A, Masse S, Beca B, Simmons CA, Deshpande VS, McGarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 110(49):19

    Article  CAS  Google Scholar 

  • Ulrich MM, Janssen AM, Daemen MJ, Rappaport L, Samuel JL, Contard F, Smits JF, Cleutjens JP (1997) Increased expression of fibronectin isoforms after myocardial infarction in rats. J Mol Cell Cardiol 29(9):2533–2543

    Article  CAS  PubMed  Google Scholar 

  • Van Rijen HV, Wilders R, Van Ginneken AC, Jongsma HJ (1998) Quantitative analysis of dual whole-cell voltage-clamp determination of gap junctional conductance. Pflugers Arch 436(1):141–151

    Article  PubMed  Google Scholar 

  • van Spreeuwel AC, Bax NA, Bastiaens AJ, Foolen J, Loerakker S, Borochin M, van der Schaft DW, Chen CS, Baaijens FP, Bouten CV (2014) The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues. Integr Biol 6(4):422–429

    Article  Google Scholar 

  • van Veen AA, van Rijen HV, Opthof T (2001) Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res 51(2):217–229

    Article  PubMed  Google Scholar 

  • Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31(5):991–1003

    Article  CAS  PubMed  Google Scholar 

  • Wackers FJT, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, Gottschalk A, Zaret BL, Quartararo L, Pytlik L (1979) Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol 43(6):1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20(6):616–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams C, Quinn KP, Georgakoudi I, Black LD III (2014) Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater 10(1):194–204

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Chung TH, Tseng YZ, Wang SM (1999) N-cadherin/catenin-based costameres in cultured chicken cardiomyocytes. J Cell Biochem 75(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Sung HC, Chung TH, DePhilip RM (2002) Role of N-cadherin- and integrin-based costameres in the development of rat cardiomyocytes. J Cell Biochem 84(4):717–724

    Article  PubMed  CAS  Google Scholar 

  • Yamada KA, Rogers JG, Sundset R, Steinberg TH, Saffitz JE (2003) Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol 14(11):1205–1212

    Article  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):12

    Article  CAS  Google Scholar 

  • Zhuang J, Yamada KA, Saffitz JE, Kleber AG (2000) Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res 87(4):316–322

    Article  CAS  PubMed  Google Scholar 

  • Zimetbaum PJ, Josephson ME (2003) Use of the electrocardiogram in acute myocardial infarction. N Engl J Med 348(10):933–940

    Article  PubMed  Google Scholar 

  • Zuppinger C, Schaub MC, Eppenberger HM (2000) Dynamics of early contact formation in cultured adult rat cardiomyocytes studied by N-cadherin fused to green fluorescent protein. J Mol Cell Cardiol 32(4):539–555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Grosberg or Megan L. McCain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knight, M.B., Grosberg, A., McCain, M.L. (2015). In Vitro Tools for Quantifying Structure–Function Relationships in Cardiac Myocyte Cells and Tissues. In: Ehler, E. (eds) Cardiac Cytoarchitecture. Springer, Cham. https://doi.org/10.1007/978-3-319-15263-9_2

Download citation

Publish with us

Policies and ethics