Skip to main content

Cardiac Cytoarchitecture: How to Maintain a Working Heart—Waste Disposal and Recycling in Cardiomyocytes

  • Chapter
  • First Online:
  • 1105 Accesses

Abstract

Normal development and maintenance of the heart is determined by the balance between protein synthesis and degradation. The regulation of this balance is critical, as increased protein synthesis is linked to hypertrophy of the heart, whereas increased degradation is usually associated with atrophy. Hypertrophy and atrophy of the heart are just two examples of cardiomyopathies, where the cellular equilibrium between synthesis and degradation is out of balance. It has become increasingly clear that impaired degradation of cardiac proteins is associated with the development of many cardiomyopathies. Here we discuss the functions of cardiac waste disposal and recycling systems, examine their regulation, and summarize recent developments that outline how cardiac-specific as well as ubiquitously expressed components of the cellular degradation systems contribute to the development and maintenance of a healthy heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039–2047

    CAS  PubMed  PubMed Central  Google Scholar 

  • An H, Krist DT, Statsyuk AV (2014) Crosstalk between kinases and Nedd4 family ubiquitin ligases. Mol Biosyst 10:1643–1657

    CAS  PubMed  Google Scholar 

  • Anuka E, Yivgi-Ohana N, Eimerl S, Garfinkel B, Melamed-Book N, Chepurkol E, Aravot D, Zinman T, Shainberg A, Hochhauser E et al (2013) Infarct-induced steroidogenic acute regulatory protein: a survival role in cardiac fibroblasts. Mol Endocrinol 27:1502–1517

    CAS  PubMed  Google Scholar 

  • Aoki T, Okada N, Ishida M, Yogosawa S, Makino Y, Tamura TA (1999) TIP120B: a novel TIP120-family protein that is expressed specifically in muscle tissues. Biochem Biophys Res Commun 261:911–916

    CAS  PubMed  Google Scholar 

  • Aravind L, Koonin EV (2000) The U box is a modified RING finger – a common domain in ubiquitination. Curr Biol 10:R132–R134

    CAS  PubMed  Google Scholar 

  • Arnason T, Ellison MJ (1994) Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14:7876–7883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babon JJ, Sabo JK, Zhang JG, Nicola NA, Norton RS (2009) The SOCS box encodes a hierarchy of affinities for Cullin5: implications for ubiquitin ligase formation and cytokine signalling suppression. J Mol Biol 387:162–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baboshina OV, Haas AL (1996) Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J Biol Chem 271:2823–2831

    CAS  PubMed  Google Scholar 

  • Balasubramanian S, Mani S, Shiraishi H, Johnston RK, Yamane K, Willey CD, Cooper GT, Tuxworth WJ, Kuppuswamy D (2006) Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. J Mol Cell Cardiol 41:669–679

    CAS  PubMed  Google Scholar 

  • Barral JM, Hutagalung AH, Brinker A, Hartl FU, Epstein HF (2002) Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295:669–671

    CAS  PubMed  Google Scholar 

  • Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B, Bulteau AL (2010) Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem 285:11445–11457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998) Rapid turnover of connexin43 in the adult rat heart. Circ Res 83:629–635

    CAS  PubMed  Google Scholar 

  • Bech-Otschir D, Helfrich A, Enenkel C, Consiglieri G, Seeger M, Holzhutter HG, Dahlmann B, Kloetzel PM (2009) Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat Struct Mol Biol 16:219–225

    CAS  PubMed  Google Scholar 

  • Bender T, Lewrenz I, Franken S, Baitzel C, Voos W (2011) Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Mol Biol Cell 22:541–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berchtold MW, Villalobo A (2013) The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta 1843:398–435

    PubMed  Google Scholar 

  • Bergman MR, Teerlink JR, Mahimkar R, Li L, Zhu BQ, Nguyen A, Dahi S, Karliner JS, Lovett DH (2007) Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 292:H1847–H1860

    CAS  PubMed  Google Scholar 

  • Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700

    CAS  PubMed  Google Scholar 

  • Betin VM, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122:2554–2566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betin VM, Singleton BK, Parsons SF, Anstee DJ, Lane JD (2013) Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 9:881–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birks EJ, Latif N, Enesa K, Folkvang T, Luong le A, Sarathchandra P, Khan M, Ovaa H, Terracciano CM, Barton PJ et al (2008) Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res 79:472–480

    CAS  PubMed  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    PubMed  PubMed Central  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    CAS  PubMed  Google Scholar 

  • Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680

    CAS  PubMed  Google Scholar 

  • Bota DA, Ngo JK, Davies KJ (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 38:665–677

    CAS  PubMed  Google Scholar 

  • Bowlin KM, Embree LJ, Garry MG, Garry DJ, Shi X (2013) Kbtbd5 is regulated by MyoD and restricted to the myogenic lineage. Differentiation 86:184–191

    CAS  PubMed  Google Scholar 

  • Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ, Wawrousek EF (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924–2934

    CAS  PubMed  Google Scholar 

  • Brodsky JL (2007) The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J 404:353–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DD, Christine KS, Showell C, Conlon FL (2007) Small heat shock protein Hsp27 is required for proper heart tube formation. Genesis 45:667–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browne KA, Johnstone RW, Jans DA, Trapani JA (2000) Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J Biol Chem 275:39262–39266

    CAS  PubMed  Google Scholar 

  • Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D, Ding L, Labeit S, Horwitz J, Leonard KR et al (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279:7917–7924

    CAS  PubMed  Google Scholar 

  • Bush KT, Tsukamoto T, Nigam SK (2000) Selective degradation of E-cadherin and dissolution of E-cadherin-catenin complexes in epithelial ischemia. Am J Physiol Renal Physiol 278:F847–F852

    CAS  PubMed  Google Scholar 

  • Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V et al (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288:7803–7814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC et al (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726

    CAS  PubMed  Google Scholar 

  • Chan AL, Grossman T, Zuckerman V, Campigli Di Giammartino D, Moshel O, Scheffner M, Monahan B, Pilling P, Jiang YH, Haupt S et al (2013) c-Abl phosphorylates E6AP and regulates its E3 ubiquitin ligase activity. Biochemistry 52:3119–3129

    CAS  PubMed  Google Scholar 

  • Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y et al (2012) The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149:1098–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Wei L, Otani T, Youker KA, Entman ML, Schwartz RJ (2003) Inhibitory cardiac transcription factor, SRF-N, is generated by caspase 3 cleavage in human heart failure and attenuated by ventricular unloading. Circulation 108:407–413

    CAS  PubMed  Google Scholar 

  • Chang TS, Jeong W, Lee DY, Cho CS, Rhee SG (2004) The RING-H2-finger protein APC11 as a target of hydrogen peroxide. Free Radic Biol Med 37:521–530

    CAS  PubMed  Google Scholar 

  • Chao CCK (2015) Mechanisms of p53 degradation. Clin Chim Acta 438:139–147

    CAS  PubMed  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    CAS  PubMed  Google Scholar 

  • Chauhan N, Chaunsali L, Deshmukh P, Padmanabhan B (2013) Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling. Bioinformation 9:450–455

    PubMed  PubMed Central  Google Scholar 

  • Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M (1993) Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell 74:357–369

    CAS  PubMed  Google Scholar 

  • Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L et al (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111:4690–4699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SN, Czernuszewicz G, Tan Y, Lombardi R, Jin J, Willerson JT, Marian AJ (2012) Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ Res 111:907–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Dorn GW II (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Niles EG, Pickart CM (1991) Isolation of a cDNA encoding a mammalian multiubiquitinating enzyme (E225K) and overexpression of the functional enzyme in Escherichia coli. J Biol Chem 266:15698–15704

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    CAS  PubMed  Google Scholar 

  • Cheok CF, Verma CS, Baselga J, Lane DP (2010) Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37

    PubMed  Google Scholar 

  • Chow AK, Cena J, El-Yazbi AF, Crawford BD, Holt A, Cho WJ, Daniel EE, Schulz R (2007) Caveolin-1 inhibits matrix metalloproteinase-2 activity in the heart. J Mol Cell Cardiol 42:896–901

    CAS  PubMed  Google Scholar 

  • Chowdhury I, Tharakan B, Bhat GK (2008) Caspases – an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27

    PubMed  Google Scholar 

  • Cilenti L, Balakrishnan MP, Wang XL, Ambivero C, Sterlicchi M, del Monte F, Ma XL, Zervos AS (2011) Regulation of Abro1/KIAA0157 during myocardial infarction and cell death reveals a novel cardioprotective mechanism for Lys63-specific deubiquitination. J Mol Cell Cardiol 50:652–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E et al (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–385

    CAS  PubMed  Google Scholar 

  • Cohen S, Lee D, Zhai B, Gygi SP, Goldberg AL (2014) Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation. J Cell Biol 204:747–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG (1999) Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol 277:H777–H787

    CAS  PubMed  Google Scholar 

  • Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A 99:6252–6256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong J, Goll DE, Peterson AM, Kapprell HP (1989) The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain). J Biol Chem 264:10096–10103

    CAS  PubMed  Google Scholar 

  • Contino G, Amati F, Pucci S, Pontieri E, Pichiorri F, Novelli A, Botta A, Mango R, Nardone AM, Sangiuolo FC et al (2004) Expression analysis of the gene encoding for the U-box-type ubiquitin ligase UBE4A in human tissues. Gene 328:69–74

    CAS  PubMed  Google Scholar 

  • Cota CD, Bagher P, Pelc P, Smith CO, Bodner CR, Gunn TM (2006) Mice with mutations in Mahogunin ring finger-1 (Mgrn1) exhibit abnormal patterning of the left-right axis. Dev Dyn 235:3438–3447

    CAS  PubMed  Google Scholar 

  • Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    CAS  PubMed  Google Scholar 

  • Croall DE, Chacko S, Wang Z (1996) Cleavage of caldesmon and calponin by calpain: substrate recognition is not dependent on calmodulin binding domains. Biochim Biophys Acta 1298:276–284

    CAS  PubMed  Google Scholar 

  • Cui Z, Zhang S (2013) Regulation of the human ether-a-go-go-related gene (hERG) channel by Rab4 protein through neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2). J Biol Chem 288:21876–21886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnington RH, Nazari M, Dixon IM (2009) c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis. Can J Physiol Pharmacol 87:764–772

    CAS  PubMed  Google Scholar 

  • Dai KS, Liew CC (2001) A novel human striated muscle RING zinc finger protein, SMRZ, interacts with SMT3b via its RING domain. J Biol Chem 276:23992–23999

    CAS  PubMed  Google Scholar 

  • Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342:770–780

    CAS  PubMed  Google Scholar 

  • Davies PJ, Wallach D, Willingham MC, Pastan I, Yamaguchi M, Robson RM (1978) Filamin-actin interaction. Dissociation of binding from gelation by Ca2+-activated proteolysis. J Biol Chem 253:4036–4042

    CAS  PubMed  Google Scholar 

  • de Sagarra MR, Mayo I, Marco S, Rodriguez-Vilarino S, Oliva J, Carrascosa JL, Casta ñ JG (1999) Mitochondrial localization and oligomeric structure of HClpP, the human homologue of E. coli ClpP. J Mol Biol 292:819–825

    PubMed  Google Scholar 

  • Delaval E, Perichon M, Friguet B (2004) Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 271:4559–4564

    CAS  PubMed  Google Scholar 

  • DePaoli-Roach AA, Tagliabracci VS, Segvich DM, Meyer CM, Irimia JM, Roach PJ (2010) Genetic depletion of the malin E3 ubiquitin ligase in mice leads to lafora bodies and the accumulation of insoluble laforin. J Biol Chem 285:25372–25381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    CAS  PubMed  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL III (2002) An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci U S A 99:2866–2871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW II, Yin XM (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285:27879–27890

    CAS  PubMed  PubMed Central  Google Scholar 

  • du Puy L, Beqqali A, van Tol HT, Monshouwer-Kloots J, Passier R, Haagsman HP, Roelen BA (2012) Sarcosin (Krp1) in skeletal muscle differentiation: gene expression profiling and knockdown experiments. Int J Dev Biol 56:301–309

    PubMed  Google Scholar 

  • Durham JT, Brand OM, Arnold M, Reynolds JG, Muthukumar L, Weiler H, Richardson JA, Naya FJ (2006) Myospryn is a direct transcriptional target for MEF2A that encodes a striated muscle, alpha-actinin-interacting, costamere-localized protein. J Biol Chem 281:6841–6849

    CAS  PubMed  Google Scholar 

  • Dye BT, Schulman BA (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 36:131–150

    CAS  PubMed  Google Scholar 

  • Esser C, Scheffner M, Hohfeld J (2005) The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 280:27443–27448

    CAS  PubMed  Google Scholar 

  • Etard C, Roostalu U, Strahle U (2008) Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 180:1163–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan GC, Kranias EG (2010) Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. J Mol Cell Cardiol 51:574–577

    PubMed  PubMed Central  Google Scholar 

  • Fan Q, Huang ZM, Boucher M, Shang X, Zuo L, Brinks H, Lau WB, Zhang J, Chuprun JK, Gao E (2013) Inhibition of Fas-associated death domain-containing protein (FADD) protects against myocardial ischemia/reperfusion injury in a heart failure mouse model. PLoS One 8:e73537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6:614–621

    CAS  PubMed  Google Scholar 

  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951

    CAS  PubMed  Google Scholar 

  • Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN (2007a) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117:2486–2495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fielitz J, van Rooij E, Spencer JA, Shelton JM, Latif S, van der Nagel R, Bezprozvannaya S, de Windt L, Richardson JA, Bassel-Duby R et al (2007b) Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci U S A 104:4377–4382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956

    CAS  PubMed  Google Scholar 

  • Foo RS, Chan LK, Kitsis RN, Bennett MR (2007) Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem 282:5529–5535

    CAS  PubMed  Google Scholar 

  • Fougerousse F, Anderson LV, Delezoide AL, Suel L, Durand M, Beckmann JS (2000) Calpain3 expression during human cardiogenesis. Neuromuscul Disord 10:251–256

    CAS  PubMed  Google Scholar 

  • Fourquet S, Guerois R, Biard D, Toledano MB (2010) Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem 285:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller SJ, Sivarajah K, Sugden PH (2008) ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44:831–854

    CAS  PubMed  Google Scholar 

  • Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y, Dorn GW II (2007) Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 100:1071–1078

    CAS  PubMed  Google Scholar 

  • Garg A, O’Rourke J, Long C, Doering J, Ravenscroft G, Bezprozvannaya S, Nelson BR, Beetz N, Li L, Chen S et al (2014) KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J Clin Invest 124:3529–3539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garyali P, Segvich DM, DePaoli-Roach AA, Roach PJ (2014) Protein degradation and quality control in cells from laforin and malin knockout mice. J Biol Chem 289:20606–20614

    CAS  PubMed  Google Scholar 

  • Gatayama R, Ueno K, Nakamura H, Yanagi S, Ueda H, Yamagishi H, Yasui S (2013) Nemaline myopathy with dilated cardiomyopathy in childhood. Pediatrics 131:e1986–e1990

    PubMed  Google Scholar 

  • Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, Rodrigues B (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 289:H768–H776

    CAS  PubMed  Google Scholar 

  • Girgis CM, Cheng K, Scott CH, Gunton JE (2012) Novel links between HIFs, type 2 diabetes, and metabolic syndrome. Trends Endocrinol Metab 23:372–380

    CAS  PubMed  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    CAS  PubMed  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    CAS  PubMed  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    CAS  PubMed  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gousseva N, Baker RT (2003) Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr 11:163–179

    CAS  PubMed  Google Scholar 

  • Grabbe C, Husnjak K, Dikic I (2011) The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 12:295–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg CC, Connelly PS, Daniels MP, Horowits R (2008) Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. Exp Cell Res 314:1177–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grier JD, Xiong S, Elizondo-Fraire AC, Parant JM, Lozano G (2006) Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol 26:192–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths EK, Sanchez O, Mill P, Krawczyk C, Hojilla CV, Rubin E, Nau MM, Khokha R, Lipkowitz S, Hui CC et al (2003) Cbl-3-deficient mice exhibit normal epithelial development. Mol Cell Biol 23:7708–7718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillon B, Bulteau AL, Wattenhofer-Donze M, Schmucker S, Friguet B, Puccio H, Drapier JC, Bouton C (2009) Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J 276:1036–1047

    CAS  PubMed  Google Scholar 

  • Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT et al (2013) Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 93:1108–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupte A, Mora S (2006) Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes. Biochem Biophys Res Commun 342:751–757

    CAS  PubMed  Google Scholar 

  • Haas AL, Bright PM, Jackson VE (1988) Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation. J Biol Chem 263:13268–13275

    CAS  PubMed  Google Scholar 

  • Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50:1012–1020

    CAS  PubMed  Google Scholar 

  • Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, van de Weijer T, Hesselink M, Jaeger D, Kienesberger PC, Zierler K et al (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 17:1076–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagens O, Minina E, Schweiger S, Ropers HH, Kalscheuer V (2006) Characterization of FBX25, encoding a novel brain-expressed F-box protein. Biochim Biophys Acta 1760:110–118

    CAS  PubMed  Google Scholar 

  • Hagiwara S, Iwasaka H, Shingu C, Matumoto S, Hasegawa A, Noguchi T (2011) Heat shock protein 47 (HSP47) antisense oligonucleotides reduce cardiac remodeling and improve cardiac function in a rat model of myocardial infarction. Thorac Cardiovasc Surg 59:386–392

    CAS  PubMed  Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajimohammadreza I, Raser KJ, Nath R, Nadimpalli R, Scott M, Wang KK (1997) Neuronal nitric oxide synthase and calmodulin-dependent protein kinase IIalpha undergo neurotoxin-induced proteolysis. J Neurochem 69:1006–1013

    CAS  PubMed  Google Scholar 

  • Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB III (2013) Autophagy: regulation and role in development. Autophagy 9:951–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamazaki J, Sasaki K, Kawahara H, Hisanaga S, Tanaka K, Murata S (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27:6629–6638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerling BC, Gustafsson AB (2014) Mitochondrial quality control in the myocardium: cooperation between protein degradation and mitophagy. J Mol Cell Cardiol 75:122–130

    CAS  PubMed  Google Scholar 

  • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    CAS  PubMed  Google Scholar 

  • Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111

    CAS  PubMed  Google Scholar 

  • Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada K, Fukuda S, Kunimoto M, Yoshida K (1997) Distribution of ankyrin isoforms and their proteolysis after ischemia and reperfusion in rat brain. J Neurochem 69:371–376

    CAS  PubMed  Google Scholar 

  • Hassink RJ, Nakajima H, Nakajima HO, Doevendans PA, Field LJ (2009) Expression of a transgene encoding mutant p193/CUL7 preserves cardiac function and limits infarct expansion after myocardial infarction. Heart 95:1159–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120

    CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    CAS  PubMed  Google Scholar 

  • Hayashi C, Ono Y, Doi N, Kitamura F, Tagami M, Mineki R, Arai T, Taguchi H, Yanagida M, Hirner S et al (2008) Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem 283:14801–14814

    CAS  PubMed  Google Scholar 

  • He B, Tang RH, Weisleder N, Xiao B, Yuan Z, Cai C, Zhu H, Lin P, Qiao C, Li J et al (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol Ther 20:727–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    CAS  PubMed  Google Scholar 

  • Ho CY, Stromer MH, Robson RM (1994) Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie 76:369–375

    CAS  PubMed  Google Scholar 

  • Hochstrasser M (2006) Lingering mysteries of ubiquitin-chain assembly. Cell 124:27–34

    PubMed  Google Scholar 

  • Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    CAS  PubMed  Google Scholar 

  • Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Matoba S (2014) Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail 7:500–509

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CZ, Sethi JK, Hagen T (2013) The role of the cullin-5 e3 ubiquitin ligase in the regulation of insulin receptor substrate-1. Biochem Res Int 2012:282648

    Google Scholar 

  • Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R, Yuan J, Liu Q, Li X, Zou Y et al (2012) CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell 22:781–795

    CAS  PubMed  Google Scholar 

  • Hu S, Yang X (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 278:10055–10060

    CAS  PubMed  Google Scholar 

  • Hua Y, Nair S (2015) Proteases in cardiometabolic diseases: pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta 1852(2):195–208

    CAS  PubMed  Google Scholar 

  • Hua Y, Zhang Y, Dolence J, Shi GP, Ren J, Nair S (2012) Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes 62:498–509

    PubMed  Google Scholar 

  • Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T (2000) The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 275:26661–26664

    CAS  PubMed  Google Scholar 

  • Huang TT, Carlson EJ, Kozy HM, Mantha S, Goodman SI, Ursell PC, Epstein CJ (2001) Genetic modification of prenatal lethality and dilated cardiomyopathy in Mn superoxide dismutase mutant mice. Free Radic Biol Med 31:1101–1110

    CAS  PubMed  Google Scholar 

  • Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    CAS  PubMed  Google Scholar 

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    CAS  PubMed  Google Scholar 

  • Inserte J, Barba I, Hernando V, Garcia-Dorado D (2009) Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res 81:116–122

    CAS  PubMed  Google Scholar 

  • Ishii K, Norota I, Obara Y (2012) Endocytic regulation of voltage-dependent potassium channels in the heart. J Pharmacol Sci 120:264–269

    CAS  PubMed  Google Scholar 

  • Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269

    CAS  PubMed  Google Scholar 

  • Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Tanaka T, Nunoki K, Hidaka H, Suzuki K (1987) The Ca2+-activated protease (calpain) modulates Ca2+/calmodulin dependent activity of smooth muscle myosin light chain kinase. Biochem Biophys Res Commun 145:1321–1328

    CAS  PubMed  Google Scholar 

  • Jackson S, Xiong Y (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34:562–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JW, Lee WY, Lee JH, Moon SH, Kim CH, Chung HM (2011) A novel Fbxo25 acts as an E3 ligase for destructing cardiac specific transcription factors. Biochem Biophys Res Commun 410:183–188

    CAS  PubMed  Google Scholar 

  • Jennissen HP, Laub M (1988) Ubiquitin-calmodulin conjugating activity from cardiac muscle. Biol Chem Hoppe Seyler 369:1325–1330

    CAS  PubMed  Google Scholar 

  • Johnston RK, Balasubramanian S, Kasiganesan H, Baicu CF, Zile MR, Kuppuswamy D (2009) Beta3 integrin-mediated ubiquitination activates survival signaling during myocardial hypertrophy. FASEB J 23:2759–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    CAS  PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    CAS  PubMed  Google Scholar 

  • Kaiser SE, Qiu Y, Coats JE, Mao K, Klionsky DJ, Schulman BA (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9:778–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kallijarvi J, Lahtinen U, Hamalainen R, Lipsanen-Nyman M, Palvimo JJ, Lehesjoki AE (2005) TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res 308:146–155

    PubMed  Google Scholar 

  • Kamalov G, Zhao W, Zhao T, Sun Y, Ahokas RA, Marion TN, Al Darazi F, Gerling IC, Bhattacharya SK, Weber KT (2013) Atrophic cardiomyocyte signaling in hypertensive heart disease. J Cardiovasc Pharmacol 62:497–506

    CAS  PubMed  Google Scholar 

  • Kameda K, Fukao M, Kobayashi T, Tsutsuura M, Nagashima M, Yamada Y, Yamashita T, Tohse N (2006) CSN5/Jab1 inhibits cardiac L-type Ca2+ channel activity through protein-protein interactions. J Mol Cell Cardiol 40:562–569

    CAS  PubMed  Google Scholar 

  • Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 12:3872–3881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy AD, Chow AK, Ali MA, Schulz R (2009) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423

    PubMed  Google Scholar 

  • Kang MY, Zhang Y, Matkovich SJ, Diwan A, Chishti AH, Dorn GW II (2010) Receptor-independent cardiac protein kinase Calpha activation by calpain-mediated truncation of regulatory domains. Circ Res 107:903–912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S (2000) Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125

    CAS  PubMed  Google Scholar 

  • Kang SG, Ortega J, Singh SK, Wang N, Huang NN, Steven AC, Maurizi MR (2002) Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP. J Biol Chem 277:21095–21102

    CAS  PubMed  Google Scholar 

  • Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A 103:2588–2593

    CAS  PubMed  Google Scholar 

  • Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N, Walker SA, Ktistakis NT (2013) Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci 126:5224–5238

    CAS  PubMed  Google Scholar 

  • Kato JY, Yoneda-Kato N (2009) Mammalian COP9 signalosome. Genes Cells 14:1209–1225

    CAS  PubMed  Google Scholar 

  • Kawaguchi M, Minami K, Nagashima K, Seino S (2006) Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion. J Biol Chem 281:13015–13020

    CAS  PubMed  Google Scholar 

  • Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J, Lipkowitz S (1999) cbl-3: a new mammalian cbl family protein. Oncogene 18:3365–3375

    CAS  PubMed  Google Scholar 

  • Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101:18135–18140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessel M, Maurizi MR, Kim B, Kocsis E, Trus BL, Singh SK, Steven AC (1995) Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J Mol Biol 250:587–594

    CAS  PubMed  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T (1999) Molecular cloning and characterization of a novel cbl-family gene, cbl-c. Gene 239:145–154

    CAS  PubMed  Google Scholar 

  • Kirchner P, Bug M, Meyer H (2013) Ubiquitination of the N-terminal region of caveolin-1 regulates endosomal sorting by the VCP/p97 AAA-ATPase. J Biol Chem 288:7363–7372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    CAS  PubMed  Google Scholar 

  • Kishi T, Ikeda A, Nagao R, Koyama N (2007) The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin. Proc Natl Acad Sci U S A 104:17418–17423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinridders A, Pogoda HM, Irlenbusch S, Smyth N, Koncz C, Hammerschmidt M, Bruning JC (2009) PLRG1 is an essential regulator of cell proliferation and apoptosis during vertebrate development and tissue homeostasis. Mol Cell Biol 29:3173–3185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    CAS  PubMed  Google Scholar 

  • Knowlton KU (2008) CVB infection and mechanisms of viral cardiomyopathy. Curr Top Microbiol Immunol 323:315–335

    CAS  PubMed  Google Scholar 

  • Kohr MJ, Evangelista AM, Ferlito M, Steenbergen C, Murphy E (2014) S-nitrosylation of TRIM72 at cysteine 144 is critical for protection against oxidation-induced protein degradation and cell death. J Mol Cell Cardiol 69:67–74

    CAS  PubMed  Google Scholar 

  • Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N et al (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167:1713–1728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Tanida I, Ueno T, Ohsumi M, Ohsumi Y, Kominami E (2001) The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation. J Biol Chem 276:9846–9854

    CAS  PubMed  Google Scholar 

  • Koyama S, Hata S, Witt CC, Ono Y, Lerche S, Ojima K, Chiba T, Doi N, Kitamura F, Tanaka K et al (2008) Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 376:1224–1236

    CAS  PubMed  Google Scholar 

  • Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ (2008) Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 17:3271–3280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubbutat MH, Vousden KH (1997) Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 17:460–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Quinsay MN, Gustafsson AB (2013) Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun Integr Biol 6:e24511

    PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN, Gustafsson AB (2012) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288:915–926

    PubMed  PubMed Central  Google Scholar 

  • Kudryashova E, Kudryashov D, Kramerova I, Spencer MJ (2005) Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J Mol Biol 354:413–424

    CAS  PubMed  Google Scholar 

  • Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619–18625

    CAS  PubMed  Google Scholar 

  • Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I, Sou YS, Ueno T, Kominami E, Tanaka K, Yamane T (2006) The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol 355:612–618

    CAS  PubMed  Google Scholar 

  • Kunjappu MJ, Hochstrasser M (2013) Assembly of the 20S proteasome. Biochim Biophys Acta 1843:2–12

    PubMed  Google Scholar 

  • Kurtenbach S, Zoidl G (2014) Gap junction modulation and its implications for heart function. Front Physiol 5:82

    PubMed  PubMed Central  Google Scholar 

  • LaBeau-DiMenna EM, Clark KA, Bauman KD, Parker DS, Cripps RM, Geisbrecht ER (2012) Thin, a Trim32 ortholog, is essential for myofibril stability and is required for the integrity of the costamere in Drosophila. Proc Natl Acad Sci U S A 109:17983–17988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmikuttyamma A, Selvakumar P, Sharma AR, Anderson DH, Sharma RK (2004) In vitro proteolytic degradation of bovine brain calcineurin by m-calpain. Neurochem Res 29:1913–1921

    CAS  PubMed  Google Scholar 

  • Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385:737–740

    CAS  PubMed  Google Scholar 

  • Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986–1990

    CAS  PubMed  Google Scholar 

  • Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205–215

    CAS  PubMed  Google Scholar 

  • Lancel S, Joulin O, Favory R, Goossens JF, Kluza J, Chopin C, Formstecher P, Marchetti P, Neviere R (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111:2596–2604

    CAS  PubMed  Google Scholar 

  • Lange S, Perera S, Teh P, Chen J (2012) Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Mol Biol Cell 23:2490–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B et al (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603

    CAS  PubMed  Google Scholar 

  • Larsen K, Madsen LB, Bendixen C (2012) Porcine dorfin: molecular cloning of the RNF19 gene, sequence comparison, mapping and expression analysis. Mol Biol Rep 39:10053–10062

    CAS  PubMed  Google Scholar 

  • Laub M, Steppuhn JA, Bluggel M, Immler D, Meyer HE, Jennissen HP (1998) Modulation of calmodulin function by ubiquitin-calmodulin ligase and identification of the responsible ubiquitylation site in vertebrate calmodulin. Eur J Biochem 255:422–431

    CAS  PubMed  Google Scholar 

  • Laugwitz KL, Moretti A, Weig HJ, Gillitzer A, Pinkernell K, Ott T, Pragst I, Stadele C, Seyfarth M, Schomig A et al (2001) Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051–2063

    CAS  PubMed  Google Scholar 

  • Laure L, Daniele N, Suel L, Marchand S, Aubert S, Bourg N, Roudaut C, Duguez S, Bartoli M, Richard I (2010) A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-kappaB pathway in skeletal muscle. FEBS J 277:4322–4337

    CAS  PubMed  Google Scholar 

  • Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH (2006) The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns 6:277–284

    CAS  PubMed  Google Scholar 

  • Lee I, Schindelin H (2008) Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134:268–278

    CAS  PubMed  Google Scholar 

  • Lei L, Mason S, Liu D, Huang Y, Marks C, Hickey R, Jovin IS, Pypaert M, Johnson RS, Giordano FJ (2008) Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol Cell Biol 28:3790–3803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leithe E, Rivedal E (2004a) Epidermal growth factor regulates ubiquitination, internalization and proteasome-dependent degradation of connexin43. J Cell Sci 117:1211–1220

    CAS  PubMed  Google Scholar 

  • Leithe E, Rivedal E (2004b) Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem 279:50089–50096

    CAS  PubMed  Google Scholar 

  • Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A et al (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    CAS  PubMed  Google Scholar 

  • Levy JR, Campbell KP, Glass DJ (2013) MG53’s new identity. Skelet Muscle 3:25

    PubMed  PubMed Central  Google Scholar 

  • Leykauf K, Salek M, Bomke J, Frech M, Lehmann WD, Durst M, Alonso A (2006) Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process. J Cell Sci 119:3634–3642

    CAS  PubMed  Google Scholar 

  • Li G, Iyengar R (2002) Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci U S A 99:13254–13259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ, Patterson C (2007a) Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest 117:3211–3223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JM, Wu H, Zhang W, Blackburn MR, Jin J (2013) The p97-UFD1L-NPL4 protein complex mediates cytokine-induced IkappaBalpha proteolysis. Mol Cell Biol 34:335–347

    PubMed  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975

    CAS  PubMed  Google Scholar 

  • Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin XM (2010) Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 286:7327–7338

    PubMed  PubMed Central  Google Scholar 

  • Li P, Waters RE, Redfern SI, Zhang M, Mao L, Annex BH, Yan Z (2007b) Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am J Pathol 170:599–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Baillie GS, Houslay MD (2009) Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5. J Biol Chem 284:16170–16182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Demartino GN (2009) Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Biochem J 421:397–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liepinsh E, Makrecka M, Kuka J, Makarova E, Vilskersts R, Cirule H, Sevostjanovs E, Grinberga S, Pugovics O, Dambrova M (2013) The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism 63:127–136

    PubMed  Google Scholar 

  • Lin G, Brownsey RW, MacLeod KM (2009) Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell Mol Life Sci 66:919–932

    CAS  PubMed  Google Scholar 

  • Lipsanen-Nyman M, Perheentupa J, Rapola J, Sovijarvi A, Kupari M (2003) Mulibrey heart disease: clinical manifestations, long-term course, and results of pericardiectomy in a series of 49 patients born before 1985. Circulation 107:2810–2815

    PubMed  Google Scholar 

  • Liu J, Furukawa M, Matsumoto T, Xiong Y (2002) NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 10:1511–1518

    CAS  PubMed  Google Scholar 

  • Liu P, Sun M, Sader S (2006) Matrix metalloproteinases in cardiovascular disease. Can J Cardiol 22(Suppl B):25B–30B

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Lu B, Lee I, Ondrovicova G, Kutejova E, Suzuki CK (2004) DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 279:13902–13910

    CAS  PubMed  Google Scholar 

  • Liu X, Qi F, Wu W (2014) Effect of intervention in the diacylglycerolprotein kinase C signaling pathway on JNK1 expression and its downstream signaling in diabetic cardiomyopathy. Mol Med Rep 9:979–984

    CAS  PubMed  Google Scholar 

  • Lu S, Carroll SL, Herrera AH, Ozanne B, Horowits R (2003) New N-RAP-binding partners alpha-actinin, filamin and Krp1 detected by yeast two-hybrid screening: implications for myofibril assembly. J Cell Sci 116:2169–2178

    CAS  PubMed  Google Scholar 

  • Lutsch G, Vetter R, Offhauss U, Wieske M, Grone HJ, Klemenz R, Schimke I, Stahl J, Benndorf R (1997) Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation 96:3466–3476

    CAS  PubMed  Google Scholar 

  • Luttun A, Dewerchin M, Collen D, Carmeliet P (2000) The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr Atheroscler Rep 2:407–416

    CAS  PubMed  Google Scholar 

  • Maejima Y, Usui S, Zhai P, Takamura M, Kaneko S, Zablocki D, Yokota M, Isobe M, Sadoshima J (2014) Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A. Circ Heart Fail 7:479–490

    CAS  PubMed  Google Scholar 

  • Maekawa A, Lee JK, Nagaya T, Kamiya K, Yasui K, Horiba M, Miwa K, Uzzaman M, Maki M, Ueda Y et al (2003) Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J Mol Cell Cardiol 35:1277–1284

    CAS  PubMed  Google Scholar 

  • Mammen AL, Mahoney JA, St Germain A, Badders N, Taylor JP, Rosen A, Spinette S (2011) A novel conserved isoform of the ubiquitin ligase UFD2a/UBE4B is expressed exclusively in mature striated muscle cells. PLoS One 6:e28861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manfiolli AO, Maragno AL, Baqui MM, Yokoo S, Teixeira FR, Oliveira EB, Gomes MD (2008) FBXO25-associated nuclear domains: a novel subnuclear structure. Mol Biol Cell 19:1848–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maravei DV, Trbovich AM, Perez GI, Tilly KI, Banach D, Talanian RV, Wong WW, Tilly JL (1997) Cleavage of cytoskeletal proteins by caspases during ovarian cell death: evidence that cell-free systems do not always mimic apoptotic events in intact cells. Cell Death Differ 4:707–712

    CAS  PubMed  Google Scholar 

  • Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin P, Pardo J, Schill N, Jockel L, Berg M, Froelich CJ, Wallich R, Simon MM (2010) Granzyme B-induced and caspase 3-dependent cleavage of gelsolin by mouse cytotoxic T cells modifies cytoskeleton dynamics. J Biol Chem 285:18918–18927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashima T, Naito M, Tsuruo T (1999) Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene 18:2423–2430

    CAS  PubMed  Google Scholar 

  • Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095

    CAS  PubMed  Google Scholar 

  • Masumiya H, Asaumi Y, Nishi M, Minamisawa S, Adachi-Akahane S, Yoshida M, Kangawa K, Ito K, Kagaya Y, Yanagisawa T et al (2009) Mitsugumin 53-mediated maintenance of K+ currents in cardiac myocytes. Channels (Austin) 3:6–11

    CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    CAS  PubMed  Google Scholar 

  • McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC (2004) Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 117:3175–3188

    CAS  PubMed  Google Scholar 

  • McGinnis KM, Whitton MM, Gnegy ME, Wang KK (1998) Calcium/calmodulin-dependent protein kinase IV is cleaved by caspase-3 and calpain in SH-SY5Y human neuroblastoma cells undergoing apoptosis. J Biol Chem 273:19993–20000

    CAS  PubMed  Google Scholar 

  • McLendon PM, Robbins J (2011) Desmin-related cardiomyopathy: an unfolding story. Am J Physiol Heart Circ Physiol 301:H1220–H1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mearini G, Gedicke C, Schlossarek S, Witt CC, Kramer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS et al (2009) Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res 85:357–366

    PubMed  PubMed Central  Google Scholar 

  • Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662

    CAS  PubMed  Google Scholar 

  • Mir A, Lemler M, Ramaciotti C, Blalock S, Ikemba C (2011) Hypertrophic cardiomyopathy in a neonate associated with nemaline myopathy. Congenit Heart Dis 7:E37–E41

    PubMed  Google Scholar 

  • Mishra A, Godavarthi SK, Maheshwari M, Goswami A, Jana NR (2009) The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins. J Biol Chem 284:10537–10545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688

    CAS  PubMed  Google Scholar 

  • Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    CAS  PubMed  Google Scholar 

  • Molina-Navarro MM, Trivino JC, Martinez-Dolz L, Lago F, Gonzalez-Juanatey JR, Portoles M, Rivera M (2014) Functional networks of nucleocytoplasmic transport-related genes differentiate ischemic and dilated cardiomyopathies. A new therapeutic opportunity. PLoS One 9:e104709

    PubMed  PubMed Central  Google Scholar 

  • Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158:247–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mollerup S, Hofgaard JP, Braunstein TH, Kjenseth A, Leithe E, Rivedal E, Holstein-Rathlou NH, Nielsen MS (2011) Norepinephrine inhibits intercellular coupling in rat cardiomyocytes by ubiquitination of connexin43 gap junctions. Cell Commun Adhes 18:57–65

    CAS  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    CAS  PubMed  Google Scholar 

  • Moraes TF, Edwards RA, McKenna S, Pastushok L, Xiao W, Glover JN, Ellison MJ (2001) Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13. Nat Struct Biol 8:669–673

    CAS  PubMed  Google Scholar 

  • Moreau K, Rubinsztein DC (2012) The plasma membrane as a control center for autophagy. Autophagy 8:861–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA et al (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti A, Weig HJ, Ott T, Seyfarth M, Holthoff HP, Grewe D, Gillitzer A, Bott-Flugel L, Schomig A, Ungerer M et al (2002) Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc Natl Acad Sci U S A 99:11860–11865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC (2004) Roles for alphaB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Physiol Heart Circ Physiol 286:H847–H855

    CAS  PubMed  Google Scholar 

  • Mrosek M, Labeit D, Witt S, Heerklotz H, von Castelmur E, Labeit S, Mayans O (2007) Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. FASEB J 21:1383–1392

    CAS  PubMed  Google Scholar 

  • Muguruma M, Nishimuta S, Tomisaka Y, Ito T, Matsumura S (1995) Organization of the functional domains in membrane cytoskeletal protein talin. J Biochem 117:1036–1042

    CAS  PubMed  Google Scholar 

  • Muller AL, Dhalla NS (2011) Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail Rev 17:395–409

    Google Scholar 

  • Muller S, Lange S, Gautel M, Wilmanns M (2007) Rigid conformation of an immunoglobulin domain tandem repeat in the A-band of the elastic muscle protein titin. J Mol Biol 371:469–480

    PubMed  Google Scholar 

  • Mund T, Pelham HR (2009) Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins. EMBO Rep 10:501–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murachi T (1989) Intracellular regulatory system involving calpain and calpastatin. Biochem Int 18:263–294

    CAS  PubMed  Google Scholar 

  • Muthusamy VR, Kannan S, Sadhaasivam K, Gounder SS, Davidson CJ, Boeheme C, Hoidal JR, Wang L, Rajasekaran NS (2011) Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 52:366–376

    PubMed  PubMed Central  Google Scholar 

  • Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 21:22–26

    CAS  PubMed  Google Scholar 

  • Nagata K (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol 16:379–386

    CAS  PubMed  Google Scholar 

  • Nagata R, Kamimura D, Suzuki Y, Saito T, Toyama H, Dejima T, Inada H, Miwa Y, Uchino K, Umemura S et al (2011) A case of nemaline myopathy with associated dilated cardiomyopathy and respiratory failure. Int Heart J 52:401–405

    CAS  PubMed  Google Scholar 

  • Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, Ogawa W, del Monte F, Gwathmey JK, Grazette L et al (2005) PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest 115:2128–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagami H, Kikuchi Y, Katsuya T, Morishita R, Akasaka H, Saitoh S, Rakugi H, Kaneda Y, Shimamoto K, Ogihara T (2007) Gene polymorphism of myospryn (cardiomyopathy-associated 5) is associated with left ventricular wall thickness in patients with hypertension. Hypertens Res 30:1239–1246

    CAS  PubMed  Google Scholar 

  • Nakajima H, Nakajima HO, Tsai SC, Field LJ (2004) Expression of mutant p193 and p53 permits cardiomyocyte cell cycle reentry after myocardial infarction in transgenic mice. Circ Res 94:1606–1614

    CAS  PubMed  Google Scholar 

  • Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW et al (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci U S A 96:8144–8149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nastasi T, Bongiovanni A, Campos Y, Mann L, Toy JN, Bostrom J, Rottier R, Hahn C, Conaway JW, Harris AJ et al (2004) Ozz-E3, a muscle-specific ubiquitin ligase, regulates beta-catenin degradation during myogenesis. Dev Cell 6:269–282

    CAS  PubMed  Google Scholar 

  • Nath S, Dancourt J, Shteyn V, Puente G, Fong WM, Nag S, Bewersdorf J, Yamamoto A, Antonny B, Melia TJ (2014) Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat Cell Biol 16:415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhof C, Neuhof H (2014) Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 6:638–652

    PubMed  PubMed Central  Google Scholar 

  • Ngo JK, Davies KJ (2007) Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. Ann NY Acad Sci 1119:78–87

    CAS  PubMed  Google Scholar 

  • Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T (2008) CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 283:29045–29052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F (2011) Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell 44:462–475

    CAS  PubMed  Google Scholar 

  • Nordgren KK, Wallace KB (2013) Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts. Toxicol Appl Pharmacol 274:107–116

    PubMed  Google Scholar 

  • Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A et al (2009) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    PubMed  PubMed Central  Google Scholar 

  • O’Shea JM, Robson RM, Huiatt TW, Hartzer MK, Stromer MH (1979) Purified desmin from adult mammalian skeletal muscle: a peptide mapping comparison with desmins from adult mammalian and avian smooth muscle. Biochem Biophys Res Commun 89:972–980

    PubMed  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    CAS  PubMed  Google Scholar 

  • Ojima K, Kawabata Y, Nakao H, Nakao K, Doi N, Kitamura F, Ono Y, Hata S, Suzuki H, Kawahara H et al (2010) Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J Clin Invest 120:2672–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojima K, Ono Y, Ottenheijm C, Hata S, Suzuki H, Granzier H, Sorimachi H (2011) Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J Mol Biol 407:439–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P (1996) Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 28:2005–2016

    CAS  PubMed  Google Scholar 

  • Olsen SK, Lima CD (2013) Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol Cell 49:884–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A, Reed SI (2008) SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 22:252–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ondrovicova G, Liu T, Singh K, Tian B, Li H, Gakh O, Perecko D, Janata J, Granot Z, Orly J et al (2005) Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 280:25103–25110

    CAS  PubMed  Google Scholar 

  • Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23:1860–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palomer X, Salvado L, Barroso E, Vazquez-Carrera M (2013) An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol 168:3160–3172

    PubMed  Google Scholar 

  • Pan L, Li Y, Jia L, Qin Y, Qi G, Cheng J, Qi Y, Li H, Du J (2012) Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. PLoS One 7:e35315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    CAS  PubMed  Google Scholar 

  • Panneerselvam M, Patel HH, Roth DM (2012) Caveolins and heart diseases. Adv Exp Med Biol 729:145–156

    CAS  PubMed  Google Scholar 

  • Parkhouse R, Ebong IO, Robinson CV, Monie TP (2013) The N-terminal region of the human autophagy protein ATG16L1 contains a domain that folds into a helical structure consistent with formation of a coiled-coil. PLoS One 8:e76237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passino C, Barison A, Vergaro G, Gabutti A, Borrelli C, Emdin M, Clerico A (2014) Markers of fibrosis, inflammation, and remodeling pathways in heart failure. Clin Chim Acta. doi:10.1016/j.cca.2014.09.006

  • Paulsen G, Lauritzen F, Bayer ML, Kalhovde JM, Ugelstad I, Owe SG, Hallen J, Bergersen LH, Raastad T (2009) Subcellular movement and expression of HSP27, alphaB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. J Appl Physiol (1985) 107:570–582

    CAS  Google Scholar 

  • Pei D, Zhang Y, Zheng J (2012) Regulation of p53: a collaboration between Mdm2 and Mdmx. Oncotarget 3:228–235

    PubMed  PubMed Central  Google Scholar 

  • Pemrick SM, Grebenau RC (1984) Qualitative analysis of skeletal myosin as substrate of Ca2+-activated neutral protease: comparison of filamentous and soluble, native, and L2-deficient myosin. J Cell Biol 99:2297–2308

    CAS  PubMed  Google Scholar 

  • Peng J, Raddatz K, Labeit S, Granzier H, Gotthardt M (2005) Muscle atrophy in titin M-line deficient mice. J Muscle Res Cell Motil 26:381–388

    CAS  PubMed  Google Scholar 

  • Perera S, Holt MR, Mankoo BS, Gautel M (2010) Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol 351:46–61

    PubMed  Google Scholar 

  • Perez-Oliva AB, Olivares C, Jimenez-Cervantes C, Garcia-Borron JC (2009) Mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase inhibits signaling from melanocortin receptor by competition with Galphas. J Biol Chem 284:31714–31725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petermann I, Mayer C, Stypmann J, Biniossek ML, Tobin DJ, Engelen MA, Dandekar T, Grune T, Schild L, Peters C et al (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J 20:1266–1268

    CAS  PubMed  Google Scholar 

  • Peth A, Uchiki T, Goldberg AL (2010) ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell 40:671–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrache I, Birukov K, Zaiman AL, Crow MT, Deng H, Wadgaonkar R, Romer LH, Garcia JG (2003) Caspase-dependent cleavage of myosin light chain kinase (MLCK) is involved in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. FASEB J 17:407–416

    CAS  PubMed  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123:1107–1120

    CAS  PubMed  Google Scholar 

  • Philip L, Shivakumar K (2013) cIAP-2 protects cardiac fibroblasts from oxidative damage: an obligate regulatory role for ERK1/2 MAPK and NF-kappaB. J Mol Cell Cardiol 62:217–226

    CAS  PubMed  Google Scholar 

  • Pickart CM, Kasperek EM, Beal R, Kim A (1994) Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J Biol Chem 269:7115–7123

    CAS  PubMed  Google Scholar 

  • Pinz I, Robbins J, Rajasekaran NS, Benjamin IJ, Ingwall JS (2008) Unmasking different mechanical and energetic roles for the small heat shock proteins CryAB and HSPB2 using genetically modified mouse hearts. FASEB J 22:84–92

    CAS  PubMed  Google Scholar 

  • Piro FR, di Gioia CR, Gallo P, Giordano C, d’Amati G (2000) Is apoptosis a diagnostic marker of acute myocardial infarction? Arch Pathol Lab Med 124:827–831

    CAS  PubMed  Google Scholar 

  • Polge C, Heng AE, Combaret L, Bechet D, Taillandier D, Attaix D (2012) Recent progress in elucidating signalling proteolytic pathways in muscle wasting: potential clinical implications. Nutr Metab Cardiovasc Dis 23(Suppl 1):S1–S5

    PubMed  Google Scholar 

  • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, Tooze SA (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6:506–522

    CAS  PubMed  Google Scholar 

  • Pozzebon ME, Varadaraj A, Mattoscio D, Jaffray EG, Miccolo C, Galimberti V, Tommasino M, Hay RT, Chiocca S (2013) BC-box protein domain-related mechanism for VHL protein degradation. Proc Natl Acad Sci U S A 110:18168–18173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash S, Inobe T, Hatch AJ, Matouschek A (2009) Substrate selection by the proteasome during degradation of protein complexes. Nat Chem Biol 5:29–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pramod S, Shivakumar K (2014) Mechanisms in cardiac fibroblast growth: an obligate role for Skp2 and FOXO3a in ERK1/2 MAPK-dependent regulation of p27kip1. Am J Physiol Heart Circ Physiol 306:H844–H855

    CAS  PubMed  Google Scholar 

  • Printsev I, Yen L, Sweeney C, Carraway KL III (2014) Oligomerization of the Nrdp1 E3 ubiquitin ligase is necessary for efficient autoubiquitination but not ErbB3 ubiquitination. J Biol Chem 289:8570–8578

    CAS  PubMed  Google Scholar 

  • Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004) WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314–9325

    CAS  PubMed  Google Scholar 

  • Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    CAS  PubMed  Google Scholar 

  • Rafiq K, Guo J, Vlasenko L, Guo X, Kolpakov MA, Sanjay A, Houser SR, Sabri A (2011) c-Cbl ubiquitin ligase regulates focal adhesion protein turnover and myofibril degeneration induced by neutrophil protease cathepsin G. J Biol Chem 287:5327–5339

    PubMed  PubMed Central  Google Scholar 

  • Rafiq K, Kolpakov MA, Seqqat R, Guo J, Guo X, Qi Z, Yu D, Mohapatra B, Zutshi N, An W et al (2014) c-Cbl inhibition improves cardiac function and survival in response to myocardial ischemia. Circulation 129:2031–2043

    CAS  PubMed  Google Scholar 

  • Rajagopalan V, Zhao M, Reddy S, Fajardo G, Wang X, Dewey S, Gomes AV, Bernstein D (2013) Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure. Am J Physiol Heart Circ Physiol 305:H551–H562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao N, Dodge I, Band H (2002) The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 71:753–763

    CAS  PubMed  Google Scholar 

  • Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, Hayashi YK, Miyake N, Tsurusaki Y, Doi H et al (2013) Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 93:6–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raynaud F, Fernandez E, Coulis G, Aubry L, Vignon X, Bleimling N, Gautel M, Benyamin Y, Ouali A (2005) Calpain 1-titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. FEBS J 272:2578–2590

    CAS  PubMed  Google Scholar 

  • Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H (2006) Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 342:361–364

    CAS  PubMed  Google Scholar 

  • Razeghi P, Taegtmeyer H (2006) Hypertrophy and atrophy of the heart: the other side of remodeling. Ann NY Acad Sci 1080:110–119

    CAS  PubMed  Google Scholar 

  • Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C et al (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40

    CAS  PubMed  Google Scholar 

  • Ritz D, Vuk M, Kirchner P, Bug M, Schutz S, Hayer A, Bremer S, Lusk C, Baloh RH, Lee H et al (2011) Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 13:1116–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberg K, Ollinger K (1998) Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol 152:1151–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romanic AM, Harrison SM, Bao W, Burns-Kurtis CL, Pickering S, Gu J, Grau E, Mao J, Sathe GM, Ohlstein EH et al (2002) Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc Res 54:549–558

    CAS  PubMed  Google Scholar 

  • Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    CAS  PubMed  Google Scholar 

  • Rouet-Benzineb P, Buhler JM, Dreyfus P, Delcourt A, Dorent R, Perennec J, Crozatier B, Harf A, Lafuma C (1999) Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation. Eur J Heart Fail 1:337–352

    CAS  PubMed  Google Scholar 

  • Rougier JS, Albesa M, Abriel H (2010) Ubiquitylation and SUMOylation of cardiac ion channels. J Cardiovasc Pharmacol 56:22–28

    CAS  PubMed  Google Scholar 

  • Rougier JS, van Bemmelen MX, Bruce MC, Jespersen T, Gavillet B, Apotheloz F, Cordonier S, Staub O, Rotin D, Abriel H (2005) Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. Am J Physiol Cell Physiol 288:C692–C701

    CAS  PubMed  Google Scholar 

  • Rubel CE, Schisler JC, Hamlett ED, DeKroon RM, Gautel M, Alzate O, Patterson C (2013) Diggin’ on u(biquitin): a novel method for the identification of physiological E3 ubiquitin ligase substrates. Cell Biochem Biophys 67:127–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398

    CAS  PubMed  Google Scholar 

  • Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28:359–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saido TC, Mizuno K, Konno Y, Osada S, Ohno S, Suzuki K (1992) Purification and characterization of protein kinase C epsilon from rabbit brain. Biochemistry 31:482–490

    CAS  PubMed  Google Scholar 

  • Sakamaki K, Takagi C, Kitayama A, Kurata T, Yamamoto TS, Chiba K, Kominami K, Jung SK, Okawa K, Nozaki M et al (2012) Multiple functions of FADD in apoptosis, NF-kappaB-related signaling, and heart development in Xenopus embryos. Genes Cells 17:875–896

    CAS  PubMed  Google Scholar 

  • Sambuughin N, Swietnicki W, Techtmann S, Matrosova V, Wallace T, Goldfarb L, Maynard E (2012) KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochem Biophys Res Commun 421:743–749

    CAS  PubMed  Google Scholar 

  • Sambuughin N, Yau KS, Olive M, Duff RM, Bayarsaikhan M, Lu S, Gonzalez-Mera L, Sivadorai P, Nowak KJ, Ravenscroft G et al (2010) Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores. Am J Hum Genet 87:842–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanbe A (2011) Molecular mechanisms of alpha-crystallinopathy and its therapeutic strategy. Biol Pharm Bull 34:1653–1658

    CAS  PubMed  Google Scholar 

  • Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12:220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarparanta J, Blandin G, Charton K, Vihola A, Marchand S, Milic A, Hackman P, Ehler E, Richard I, Udd B (2010) Interactions with M-band titin and calpain 3 link myospryn (CMYA5) to tibial and limb-girdle muscular dystrophies. J Biol Chem 285:30304–30315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N, Fujio Y, Yamada-Honda F, Funai H, Wada A, Kawashima S, Awata N, Shibata N (1995) Elevated calcium level induces calcium-dependent proteolysis of A-CAM (N-cadherin) in heart–analysis by detergent-treated model. Biochem Biophys Res Commun 217:649–653

    CAS  PubMed  Google Scholar 

  • Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    CAS  PubMed  Google Scholar 

  • Scheler C, Li XP, Salnikow J, Dunn MJ, Jungblut PR (1999) Comparison of two-dimensional electrophoresis patterns of heat shock protein Hsp27 species in normal and cardiomyopathic hearts. Electrophoresis 20:3623–3628

    CAS  PubMed  Google Scholar 

  • Scheufele F, Wolf B, Kruse M, Hartmann T, Lempart J, Muehlich S, Pfeiffer AF, Field LJ, Charron MJ, Pan ZQ et al (2013) Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling. Cell Signal 26:233–239

    PubMed  PubMed Central  Google Scholar 

  • Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C (2013) CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest 123:3588–3599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, Finley D, Dikic I, Walters KJ, Groll M (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster K, Fan L, Harris LC (2007) MDM2 splice variants predominantly localize to the nucleoplasm mediated by a COOH-terminal nuclear localization signal. Mol Cancer Res 5:403–412

    CAS  PubMed  Google Scholar 

  • Schwechheimer C (2004) The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta 1695:45–54

    CAS  PubMed  Google Scholar 

  • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    CAS  PubMed  Google Scholar 

  • Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A et al (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Dhingra S, Khaper N, Singal PK (2007) Activation of apoptotic processes during transition from hypertrophy to heart failure in guinea pigs. Am J Physiol Heart Circ Physiol 293:H1384–H1390

    CAS  PubMed  Google Scholar 

  • Shi PP, Cao XR, Sweezer EM, Kinney TS, Williams NR, Husted RF, Nair R, Weiss RM, Williamson RA, Sigmund CD et al (2008) Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2. Am J Physiol Renal Physiol 295:F462–F470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih SC, Sloper-Mould KE, Hicke L (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 19:187–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JM, Yoo KJ, Kim MS, Kim D, Baek KH (2006) Hyaluronan- and RNA-binding deubiquitinating enzymes of USP17 family members associated with cell viability. BMC Genomics 7:292

    PubMed  PubMed Central  Google Scholar 

  • Short KM, Cox TC (2006) Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 281:8970–8980

    CAS  PubMed  Google Scholar 

  • Shumway SD, Maki M, Miyamoto S (1999) The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain. J Biol Chem 274:30874–30881

    CAS  PubMed  Google Scholar 

  • Singh RB, Chohan PK, Dhalla NS, Netticadan T (2004) The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. J Mol Cell Cardiol 37:101–110

    CAS  PubMed  Google Scholar 

  • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27:731–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soond SM, Townsend PA, Barry SP, Knight RA, Latchman DS, Stephanou A (2008) ERK and the F-box protein betaTRCP target STAT1 for degradation. J Biol Chem 283:16077–16083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorimachi H, Hata S, Ono Y (2011) Impact of genetic insights into calpain biology. J Biochem 150:23–37

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Ono Y (2012) Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 96:11–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spaich S, Will RD, Just S, Kuhn C, Frank D, Berger IM, Wiemann S, Korn B, Koegl M, Backs J et al (2012) F-box and leucine-rich repeat protein 22 is a cardiac-enriched F-box protein that regulates sarcomeric protein turnover and is essential for maintenance of contractile function in vivo. Circ Res 111:1504–1516

    CAS  PubMed  Google Scholar 

  • Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JA, Eliazer S, Ilaria RL Jr, Richardson JA, Olson EN (2000) Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol 150:771–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Gunther T, Schule R, Peters C et al (2007) Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 282:37045–37052

    CAS  PubMed  Google Scholar 

  • Srikakulam R, Winkelmann DA (2004) Chaperone-mediated folding and assembly of myosin in striated muscle. J Cell Sci 117:641–652

    CAS  PubMed  Google Scholar 

  • Stabach PR, Cianci CD, Glantz SB, Zhang Z, Morrow JS (1997) Site-directed mutagenesis of alpha II spectrin at codon 1175 modulates its mu-calpain susceptibility. Biochemistry 36:57–65

    CAS  PubMed  Google Scholar 

  • Stark K, Esslinger UB, Reinhard W, Petrov G, Winkler T, Komajda M, Isnard R, Charron P, Villard E, Cambien F et al (2010) Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet 6:e1001167

    PubMed  PubMed Central  Google Scholar 

  • Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman DS (2001) Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ 8:434–435

    CAS  PubMed  Google Scholar 

  • Stypmann J, Glaser K, Roth W, Tobin DJ, Petermann I, Matthias R, Monnig G, Haverkamp W, Breithardt G, Schmahl W et al (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci U S A 99:6234–6239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Li F, Ranek MJ, Wei N, Wang X (2011) COP9 signalosome regulates autophagosome maturation. Circulation 124:2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su H, Li J, Menon S, Liu J, Kumarapeli AR, Wei N, Wang X (2010) Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ Res 108:40–50

    PubMed  PubMed Central  Google Scholar 

  • Su H, Li J, Osinska H, Li F, Robbins J, Liu J, Wei N, Wang X (2013) The COP9 signalosome is required for autophagy, proteasome-mediated proteolysis, and cardiomyocyte survival in adult mice. Circ Heart Fail 6:1049–1057

    CAS  PubMed  Google Scholar 

  • Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A et al (2013) Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2:e000191

    PubMed  PubMed Central  Google Scholar 

  • Sung MM, Schulz CG, Wang W, Sawicki G, Bautista-Lopez NL, Schulz R (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429–436

    CAS  PubMed  Google Scholar 

  • Suzuki A, Kim K, Ikeuchi Y (1996) Proteolytic cleavage of connectin/titin. Adv Biophys 33:53–64

    CAS  PubMed  Google Scholar 

  • Suzuki CK, Suda K, Wang N, Schatz G (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264:273–276

    CAS  PubMed  Google Scholar 

  • Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218

    CAS  PubMed  Google Scholar 

  • Suzuki K, Sorimachi H, Yoshizawa T, Kinbara K, Ishiura S (1995) Calpain: novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler 376:523–529

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A 98:8662–8667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110:1661–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Waxham MN (2008) Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci 65:2637–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tacchi L, Bickerdike R, Secombes CJ, Pooley NJ, Urquhart KL, Collet B, Martin SA (2010) Ubiquitin E3 ligase atrogin-1 (Fbox-32) in Atlantic salmon (Salmo salar): sequence analysis, genomic structure and modulation of expression. Comp Biochem Physiol B Biochem Mol Biol 157:364–373

    PubMed  Google Scholar 

  • Taglia A, D’Ambrosio P, Palladino A, Politano L (2013) On a case of respiratory failure due to diaphragmatic paralysis and dilated cardiomyopathy in a patient with nemaline myopathy. Acta Myol 31:201–203

    Google Scholar 

  • Tamamori-Adachi M, Hayashida K, Nobori K, Omizu C, Yamada K, Sakamoto N, Kamura T, Fukuda K, Ogawa S, Nakayama KI et al (2004) Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. Evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation. J Biol Chem 279:50429–50436

    CAS  PubMed  Google Scholar 

  • Tamamori-Adachi M, Takagi H, Hashimoto K, Goto K, Hidaka T, Koshimizu U, Yamada K, Goto I, Maejima Y, Isobe M et al (2008) Cardiomyocyte proliferation and protection against post-myocardial infarction heart failure by cyclin D1 and Skp2 ubiquitin ligase. Cardiovasc Res 80:181–190

    CAS  PubMed  Google Scholar 

  • Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K (2013) The proteasome: from basic mechanisms to emerging roles. Keio J Med 62:1–12

    CAS  PubMed  Google Scholar 

  • Taneike M, Mizote I, Morita T, Watanabe T, Hikoso S, Yamaguchi O, Takeda T, Oka T, Tamai T, Oyabu J et al (2011) Calpain protects the heart from hemodynamic stress. J Biol Chem 286:32170–32177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E (2006) Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 273:2553–2562

    CAS  PubMed  Google Scholar 

  • Tassa A, Roux MP, Attaix D, Bechet DM (2003) Class III phosphoinositide 3-kinase–Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376:577–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatti M, Motta M, Di Bartolomeo S, Scarpa S, Cianfanelli V, Cecconi F, Salvioli R (2012) Reduced cathepsins B and D cause impaired autophagic degradation that can be almost completely restored by overexpression of these two proteases in Sap C-deficient fibroblasts. Hum Mol Genet 21:5159–5173

    CAS  PubMed  Google Scholar 

  • Taveau M, Stockholm D, Spencer M, Richard I (2002) Quantification of splice variants using molecular beacon or scorpion primers. Anal Biochem 305:227–235

    CAS  PubMed  Google Scholar 

  • Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE (1995) Is Z-disk degradation responsible for postmortem tenderization? J Anim Sci 73:1351–1367

    CAS  PubMed  Google Scholar 

  • Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K, Harper JW, Schwartz RJ, Elledge SJ (2004) Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci U S A 101:3338–3345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280:2847–2856

    CAS  PubMed  Google Scholar 

  • Toth A, Nickson P, Qin LL, Erhardt P (2006) Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 281:3679–3689

    CAS  PubMed  Google Scholar 

  • Tsunekawa S, Takahashi K, Abe M, Hiwada K, Ozawa K, Murachi T (1989) Calpain proteolysis of free and bound forms of calponin, a troponin T-like protein in smooth muscle. FEBS Lett 250:493–496

    CAS  PubMed  Google Scholar 

  • Tyagi SC, Kumar S, Glover G (1995) Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. J Cell Biochem 58:360–371

    CAS  PubMed  Google Scholar 

  • Umeda T, Kouchi Z, Kawahara H, Tomioka S, Sasagawa N, Maeda T, Sorimachi H, Ishiura S, Suzuki K (2001) Limited proteolysis of filamin is catalyzed by caspase-3 in U937 and Jurkat cells. J Biochem 130:535–542

    CAS  PubMed  Google Scholar 

  • Unverdorben P, Beck F, Sledz P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Forster F (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci U S A 111:5544–5549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usui S, Maejima Y, Pain J, Hong C, Cho J, Park JY, Zablocki D, Tian B, Glass DJ, Sadoshima J (2011) Endogenous muscle atrophy F-box mediates pressure overload-induced cardiac hypertrophy through regulation of nuclear factor-kappaB. Circ Res 109:161–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valero R, Bayes M, Francisca Sanchez-Font M, Gonzalez-Angulo O, Gonzalez-Duarte R, Marfany G (2001) Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25. Genome Biol 2:RESEARCH0043

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Laarse A (2002) Hypothesis: troponin degradation is one of the factors responsible for deterioration of left ventricular function in heart failure. Cardiovasc Res 56:8–14

    PubMed  Google Scholar 

  • van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028

    PubMed  PubMed Central  Google Scholar 

  • van Nocker S, Vierstra RD (1993) Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J Biol Chem 268:24766–24773

    PubMed  Google Scholar 

  • VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105:711–720

    CAS  PubMed  Google Scholar 

  • Varelas X, Ptak C, Ellison MJ (2003) Cdc34 self-association is facilitated by ubiquitin thiolester formation and is required for its catalytic activity. Mol Cell Biol 23:5388–5400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verdecia MA, Joazeiro CA, Wells NJ, Ferrer JL, Bowman ME, Hunter T, Noel JP (2003) Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 11:249–259

    CAS  PubMed  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    CAS  PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    CAS  PubMed  Google Scholar 

  • Wadosky KM, Rodriguez JE, Hite RL, Min JN, Walton BL, Willis MS (2014) Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab 306:E723–E739

    CAS  PubMed  Google Scholar 

  • Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22:383–394

    PubMed  Google Scholar 

  • Wang N, Gottesman S, Willingham MC, Gottesman MM, Maurizi MR (1993) A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci U S A 90:11247–11251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Sun A, Li L, Zhao G, Jia J, Wang K, Ge J, Zou Y (2012) Up-regulation of BMP-2 antagonizes TGF-beta1/ROCK-enhanced cardiac fibrotic signalling through activation of Smurf1/Smad6 complex. J Cell Mol Med 16:2301–2310

    CAS  PubMed  Google Scholar 

  • Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549

    CAS  PubMed  Google Scholar 

  • Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J, Hewett T, Robbins J (2001) Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 89:84–91

    CAS  PubMed  Google Scholar 

  • Waterman H, Yarden Y (2001) Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett 490:142–152

    CAS  PubMed  Google Scholar 

  • Wei S, Lin LF, Yang CC, Wang YC, Chang GD, Chen H, Chen CS (2007) Thiazolidinediones modulate the expression of beta-catenin and other cell-cycle regulatory proteins by targeting the F-box proteins of Skp1-Cul1-F-box protein E3 ubiquitin ligase independently of peroxisome proliferator-activated receptor gamma. Mol Pharmacol 72:725–733

    CAS  PubMed  Google Scholar 

  • Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322:1178–1191

    CAS  PubMed  Google Scholar 

  • Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100:456–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis MS, Schisler JC, Li L, Rodriguez JE, Hilliard EG, Charles PC, Patterson C (2009a) Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res 105:80–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis MS, Schisler JC, Portbury AL, Patterson C (2009b) Build it up-Tear it down: protein quality control in the cardiac sarcomere. Cardiovasc Res 81:439–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, Hilliard EG, Glass DJ, Patterson C (2013) Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct 32:39–50

    PubMed  PubMed Central  Google Scholar 

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13:270–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W et al (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S (2008) Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J 27:350–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witt SH, Granzier H, Witt CC, Labeit S (2005) MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 350:713–722

    CAS  PubMed  Google Scholar 

  • Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    CAS  PubMed  Google Scholar 

  • Woo SR, Byun JG, Kim YH, Park ER, Joo HY, Yun M, Shin HJ, Kim SH, Shen YN, Park JE et al (2013) SIRT1 suppresses cellular accumulation of beta-TrCP E3 ligase via protein degradation. Biochem Biophys Res Commun 441:831–837

    CAS  PubMed  Google Scholar 

  • Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Ma X, Ma D, Yuan J (2009) Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 6:61–66

    Google Scholar 

  • Xia T, Dimitropoulou C, Zeng J, Antonova GN, Snead C, Venema RC, Fulton D, Qian S, Patterson C, Papapetropoulos A et al (2007) Chaperone-dependent E3 ligase CHIP ubiquitinates and mediates proteasomal degradation of soluble guanylyl cyclase. Am J Physiol Heart Circ Physiol 293:H3080–H3087

    CAS  PubMed  Google Scholar 

  • Xiong S, Van Pelt CS, Elizondo-Fraire AC, Fernandez-Garcia B, Lozano G (2007) Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation 115:2925–2930

    CAS  PubMed  Google Scholar 

  • Xu CW, Zhang TP, Wang HX, Yang H, Li HH (2013) CHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice. Cell Physiol Biochem 31:199–208

    CAS  PubMed  Google Scholar 

  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Sarikas A, Dias-Santagata DC, Dolios G, Lafontant PJ, Tsai SC, Zhu W, Nakajima H, Nakajima HO, Field LJ et al (2008) The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell 30:403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Tamamori-Adachi M, Goto I, Iizuka M, Yasukawa T, Aso T, Okazaki T, Kitajima S (2011) Degradation of p21Cip1 through anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated ubiquitylation is inhibited by cyclin-dependent kinase 2 in cardiomyocytes. J Biol Chem 286:44057–44066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakawa H, Banno Y, Nakashima S, Yoshimura S, Sawada M, Nishimura Y, Nozawa Y, Sakai N (2001) Crucial role of calpain in hypoxic PC12 cell death: calpain, but not caspases, mediates degradation of cytoskeletal proteins and protein kinase C-alpha and -delta. Neurol Res 23:522–530

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198:219–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G et al (2003) Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest 111:1463–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A 94:11168–11172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Zhang TP, Tian C, Jia LX, Du J, Li HH (2012) Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens 25:994–1001

    CAS  PubMed  Google Scholar 

  • Yang KC, Rutledge CA, Mao M, Bakhshi FR, Xie A, Liu H, Bonini MG, Patel HH, Minshall RD, Dudley SC Jr (2014) Caveolin-1 modulates cardiac gap junction homeostasis and arrhythmogenecity by regulating cSrc tyrosine kinase. Circ Arrhythm Electrophysiol 7:701–710

    CAS  PubMed  Google Scholar 

  • Yang X, Chang HY, Baltimore D (1998) Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1:319–325

    CAS  PubMed  Google Scholar 

  • Yen L, Cao Z, Wu X, Ingalla ER, Baron C, Young LJ, Gregg JP, Cardiff RD, Borowsky AD, Sweeney C et al (2006) Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res 66:11279–11286

    CAS  PubMed  Google Scholar 

  • Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ (2010) The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188:101–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Aki T, Harada K, Shama KM, Kamoda Y, Suzuki A, Ohno S (1999) Translocation of HSP27 and MKBP in ischemic heart. Cell Struct Funct 24:181–185

    CAS  PubMed  Google Scholar 

  • Yoshida K, Inui M, Harada K, Saido TC, Sorimachi Y, Ishihara T, Kawashima S, Sobue K (1995) Reperfusion of rat heart after brief ischemia induces proteolysis of calspectin (nonerythroid spectrin or fodrin) by calpain. Circ Res 77:603–610

    CAS  PubMed  Google Scholar 

  • Yoshida M, Suzuki A, Shimizu T, Ozawa E (1992) Proteinase-sensitive sites on isolated rabbit dystrophin. J Biochem 112:433–439

    CAS  PubMed  Google Scholar 

  • You J, Wang M, Aoki T, Tamura TA, Pickart CM (2003) Proteolytic targeting of transcriptional regulator TIP120B by a HECT domain E3 ligase. J Biol Chem 278:23369–23375

    CAS  PubMed  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    CAS  PubMed  Google Scholar 

  • Yu W, Chen C, Fu Y, Wang X, Wang W (2010) Insulin signaling: a possible pathogenesis of cardiac hypertrophy. Cardiovasc Ther 28:101–105

    CAS  PubMed  Google Scholar 

  • Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ, Zou S, Chen Y, Zheng XL, Klionsky DJ, Liang Y et al (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    CAS  PubMed  Google Scholar 

  • Zhang C, Xu Z, He XR, Michael LH, Patterson C (2005a) CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 288:H2836–H2842

    CAS  PubMed  Google Scholar 

  • Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M (2005b) Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem 280:30091–30099

    CAS  PubMed  Google Scholar 

  • Zhang J, Song R, Li Y, Feng J, Peng L, Li J (2013) Integration of microarray profiles associated with cardiomyopathy and the potential role of Ube3a in apoptosis. Mol Med Rep 9:621–625

    PubMed  Google Scholar 

  • Zhang N, Wang Q, Ehlinger A, Randles L, Lary JW, Kang Y, Haririnia A, Storaska AJ, Cole JL, Fushman D et al (2009) Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol Cell 35:280–290

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, He X, Chen L, Zhang C, Gao X, Yang Z, Liu G (2012) Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. J Pathol 228:416–428

    CAS  PubMed  Google Scholar 

  • Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919

    CAS  PubMed  Google Scholar 

  • Zhang T, Ye Y (2014) The final moments of misfolded proteins en route to the proteasome. DNA Cell Biol 33:477–483

    PubMed  Google Scholar 

  • Zhang Y, Kang YM, Tian C, Zeng Y, Jia LX, Ma X, Du J, Li HH (2011a) Overexpression of Nrdp1 in the heart exacerbates doxorubicin-induced cardiac dysfunction in mice. PLoS One 6:e21104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiong S, Li Q, Hu S, Tashakori M, Van Pelt C, You MJ, Pageon L, Lozano G (2014) Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol 233:380–391

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zeng Y, Wang M, Tian C, Ma X, Chen H, Fang Q, Jia L, Du J, Li H (2011b) Cardiac-specific overexpression of E3 ligase Nrdp1 increases ischemia and reperfusion-induced cardiac injury. Basic Res Cardiol 106:371–383

    CAS  PubMed  Google Scholar 

  • Zhao X, Jiang B, Hu H, Mao F, Mi J, Li Z, Liu Q, Shao C, Gong Y (2015) Zebrafish cul4a, but not cul4b, modulates cardiac and forelimb development by upregulating tbx5a expression. Hum Mol Genet 24(3):853–864

    PubMed  Google Scholar 

  • Zhou W, Wei W, Sun Y (2013) Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 23:599–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y et al (2000) Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 275:15239–15245

    CAS  PubMed  Google Scholar 

  • Zidar N, Dolenc-Strazar Z, Jeruc J, Stajer D (2006) Immunohistochemical expression of activated caspase-3 in human myocardial infarction. Virchows Arch 448:75–79

    CAS  PubMed  Google Scholar 

  • Ziegenhagen R, Jennissen HP (1988) Multiple ubiquitination of vertebrate calmodulin by reticulocyte lysate and inhibition of calmodulin conjugation by phosphorylase kinase. Biol Chem Hoppe Seyler 369:1317–1324

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for S.L. was provided by a grant from the National Institute of Health, NHLBI (HL107744).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blondelle, J., Lange, S. (2015). Cardiac Cytoarchitecture: How to Maintain a Working Heart—Waste Disposal and Recycling in Cardiomyocytes. In: Ehler, E. (eds) Cardiac Cytoarchitecture. Springer, Cham. https://doi.org/10.1007/978-3-319-15263-9_12

Download citation

Publish with us

Policies and ethics