Skip to main content

Cardiac Cytoarchitecture in Health and Disease

  • Chapter
  • First Online:
Cardiac Cytoarchitecture

Abstract

Cardiomyocytes are distinguished by a particularly regularly arranged cytoskeleton. Both the myofibrils, which perform the contractile work of the heart, and the intercalated discs, a special type of cell–cell contact that serves for mechanical and electrochemical connection between individual cardiomyocytes, are multiprotein complexes that must be assembled in a regular fashion during development to guarantee a fully functional heart. In heart disease such as hypertrophic cardiomyopathy, dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy, these structures can be compromised in their composition and thus function. The aim of this chapter is to discuss how cardiac cytoarchitecture is established during development and how it is altered in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja P, Perriard E, Perriard JC, Ehler E (2004) Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 117:3295–3306

    Article  CAS  PubMed  Google Scholar 

  • Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI, Gourdie RG (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 80:88–94

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Hunter JJ, Ross JJ, Hongo M, Sansig G, Borg J, Perriard J-C, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403

    Article  CAS  PubMed  Google Scholar 

  • Armstrong MT, Lee DY, Armstrong PB (2000) Regulation of proliferation of the fetal myocardium. Dev Dyn 219:226–236

    Article  CAS  PubMed  Google Scholar 

  • Asimaki A, Tandri H, Huang H, Halushka MK, Gautam S, Basso C, Thiene G, Tsatsopoulou A, Protonotarios N, McKenna WJ et al (2009) A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 360:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69:142–150

    Article  CAS  PubMed  Google Scholar 

  • Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basso C, Bauce B, Corrado D, Thiene G (2012) Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 9:223–233

    Article  CAS  Google Scholar 

  • Chien K (1999) Stress pathways and heart failure. Cell 98:555–558

    Article  CAS  PubMed  Google Scholar 

  • Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95:2979–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dwyer J, Pluess M, Iskratsch T, Dos Remedios CG, Ehler E (2014) The formin FHOD1 in cardiomyocytes. Anat Rec (Hoboken) 297:1560–1570

    Article  CAS  Google Scholar 

  • Ehler E (2010) Changes at the cellular level in the diseased heart and their implications on function. Transworld Research Network, Kerala, India

    Google Scholar 

  • Ehler E, Gautel M (2008) The sarcomere and sarcomerogenesis. Adv Exp Med Biol 642:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ehler E, Horowits R, Zuppinger C, Price RL, Perriard E, Leu M, Caroni P, Sussman M, Eppenberger HM, Perriard JC (2001) Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 153:763–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ehler E, Perriard JC (2000) Cardiomyocyte cytoskeleton and myofibrillogenesis in healthy and diseased heart. Heart Fail Rev 5:259–269

    Article  CAS  PubMed  Google Scholar 

  • Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard J-C (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 112:1529–1539

    CAS  PubMed  Google Scholar 

  • Földes G, Matsa E, Kriston-Vizi J, Leja T, Amisten S, Kolker L, Kodagoda T, Dolatshad NF, Mioulane M, Vauchez K et al (2014) Aberrant alpha-Adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Rep 3:905–914

    Article  Google Scholar 

  • Forbes MS, Sperelakis N (1985) Intercalated discs of mammalian heart: a review of structure and function. Tissue Cell 17:605–648

    Article  CAS  PubMed  Google Scholar 

  • Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85:69–82

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Protasi F, Tijskens P (2005) The assembly of calcium release units in cardiac muscle. Ann NY Acad Sci 1047:76–85

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Luedde M, Katus HA (2012) Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol 9:91–100

    Article  CAS  Google Scholar 

  • Fürst DO, Osborn M, Weber K (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527

    Article  PubMed  Google Scholar 

  • Geisterfer Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG (1996) A mouse model of familial hypertrophic cardiomyopathy. Science 272:731–734

    Article  CAS  PubMed  Google Scholar 

  • Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S et al (2002) Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30:201–204

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E et al (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366:619–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschy A, Croquelois A, Perriard E, Schoenauer R, Agarkova I, Hoerstrup SP, Taketo MM, Pedrazzini T, Perriard JC, Ehler E (2010) Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. Basic Res Cardiol 105:597–608

    Article  CAS  PubMed  Google Scholar 

  • Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441

    Article  CAS  PubMed  Google Scholar 

  • Hoskins AC, Jacques A, Bardswell SC, McKenna WJ, Tsang V, dos Remedios CG, Ehler E, Adams K, Jalilzadeh S, Avkiran M et al (2010) Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy. J Mol Cell Cardiol 49:737–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen B, Wang T, Christoffels VM, Moorman AF (2013) Evolution and development of the building plan of the vertebrate heart. Biochim Biophys Acta 1833:783–794

    Article  CAS  PubMed  Google Scholar 

  • Kelm JM, Djonov V, Hoerstrup SP, Guenter CI, Ittner LM, Greve F, Hierlemann A, Sanchez-Bustamante CD, Perriard JC, Ehler E et al (2006) Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng 12:2541–2553

    Article  CAS  PubMed  Google Scholar 

  • Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381

    Article  CAS  PubMed  Google Scholar 

  • Lancaster OM, Baum B (2014) Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol 34:109–115

    Article  CAS  PubMed  Google Scholar 

  • Leu M, Ehler E, Perriard JC (2001) Characterisation of postnatal growth of the murine heart. Anat Embryol (Berl) 204:217–224

    Article  CAS  Google Scholar 

  • MacLellan WR, Schneider MD (2000) Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 62:289–319

    Article  CAS  PubMed  Google Scholar 

  • Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716

    Article  CAS  PubMed  Google Scholar 

  • McNally EM, Golbus JR, Puckelwartz MJ (2013) Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest 123:19–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic D, McLatchie LM, Shattock MJ (2010) The rate of loss of T-tubules in cultured adult ventricular myocytes is species dependent. Exp Physiol 95:518–527

    Article  CAS  PubMed  Google Scholar 

  • Perriard JC, Hirschy A, Ehler E (2003) Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med 13:30–38

    Article  PubMed  Google Scholar 

  • Pluess M, Daeubler G, dos Remedios CG, Ehler E (2015) Adaptations of cytoarchitecture in human dilated cardiomyopathy. Biophys Rev. doi:10.1007/s12551-014-0146-2

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rana MS, Christoffels VM, Moorman AF (2013) A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 207:588–615

    Article  CAS  Google Scholar 

  • Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28:1–24

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro Ede A Jr, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, Sjoblom B, Schreiner C, Polyansky AA, Gkougkoulia EA et al (2014) The structure and regulation of human muscle alpha-actinin. Cell 159:1447–1460

    Article  PubMed  Google Scholar 

  • Rickelt S, Pieperhoff S (2012) Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases. Cell Tissue Res 348:325–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser BM, Ehler E, Perriard E, Messerli JM, Perriard J-C (1998) Different behaviour of the non-sarcomeric cytoskeleton in neonatal and adult rat cardiomyocytes. J Mol Cell Cardiol 30:19–31

    Article  CAS  PubMed  Google Scholar 

  • Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2005) How to build a myofibril. J Muscle Res Cell Motil 26:343–354

    Article  PubMed  Google Scholar 

  • Sanger JW, Wang J, Holloway B, Du A, Sanger JM (2009) Myofibrillogenesis in skeletal muscle cells in zebrafish. Cell Motil Cytoskeleton 66:556–566

    Article  PubMed Central  PubMed  Google Scholar 

  • Schoenauer R, Emmert MY, Felley A, Ehler E, Brokopp C, Weber B, Nemir M, Faggian GG, Pedrazzini T, Falk V et al (2011) EH-myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol 106:233–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567

    Article  CAS  PubMed  Google Scholar 

  • Sparrow JC, Schöck F (2009) The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol 10:293–298

    Article  CAS  PubMed  Google Scholar 

  • Swope D, Li J, Radice GL (2013) Beyond cell adhesion: the role of armadillo proteins in the heart. Cell Signal 25:93–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Vliet P, Wu SM, Zaffran S, Puceat M (2012) Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 96:352–362

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Ehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pluess, M., Ehler, E. (2015). Cardiac Cytoarchitecture in Health and Disease. In: Ehler, E. (eds) Cardiac Cytoarchitecture. Springer, Cham. https://doi.org/10.1007/978-3-319-15263-9_1

Download citation

Publish with us

Policies and ethics