Skip to main content

Abstract

Current control design techniques require system models of moderate size to be applicable. The generation of such models is challenging for complex systems which are typically described by partial differential equations (PDEs), and model-order reduction or low-order-modeling techniques have been developed for this purpose. Many of them heavily rely on the state space models and their discretizations. However, in control applications, a sufficient accuracy of the models with respect to their input/output (I/O) behavior is typically more relevant than the accurate representation of the system states. Therefore, a discretization framework has been developed and is discussed here, which heavily focuses on the I/O map of the original PDE system and its direct discretization in the form of an I/O matrix and with error bounds measuring the relevant I/O error. We also discuss an SVD-based dimension reduction for the matrix representation of an I/O mapĀ and how it can be interpreted in terms of the Proper Orthogonal Decomposition (POD) method which gives rise to a more general POD approach in time capturing. We present numerical examples for both, reduced I/O map s and generalized POD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)

    BookĀ  MATHĀ  Google ScholarĀ 

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2005)

    Google ScholarĀ 

  3. Baumann, M.: Nonlinear model order reduction using POD/DEIM for optimal control of Burgersā€™ equation. Masterā€™s thesis, Delft University of Technology (2013)

    Google ScholarĀ 

  4. Baumann, M., Heiland, J.: genpod ā€“ matlab and python implementation with test cases. https://github.com/ManuelMBaumann/genpod.git, September (2014)

  5. Benner, P., Mehrmann, V., Sorensen, D., (eds.): Dimension Reduction of Large-Scale Systems. LNSCE, vol.Ā 45. Springer, Heidelberg (2005)

    Google ScholarĀ 

  6. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. In: Annual Review of Fluid Mechanics, vol. 25, ppĀ 539ā€“575. Annual Reviews, Palo Alto (1993)

    Google ScholarĀ 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol.Ā 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002)

    Google ScholarĀ 

  8. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253ā€“1278 (2000)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  9. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-\((R_{1},R_{2},\cdots \,,R_{N})\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324ā€“1342 (2000)

    Google ScholarĀ 

  10. Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Academic, New York (1972)

    MATHĀ  Google ScholarĀ 

  11. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. vol.Ā 4, ppĀ 105ā€“158. Cambridge University Press, Cambridge (1995). http://journals.cambridge.org/action/displayFulltext?type=8&fid=2604116&jid=ANU&volumeId=4&issueId=-1&aid=1771172

  12. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in \(L_{\infty }L_{2}\) and \(L_{\infty }L_{\infty }\). SIAM J. Numer. Anal. 32(3), 706ā€“740 (1995)

    Google ScholarĀ 

  13. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol.Ā 19. American Mathematical Society, Providence (1998)

    Google ScholarĀ 

  14. Gerhard, J., Pastoor, M., King, R., Noack, B.R., Dillmann, A., Morzynski, M., Tadmor, G.: Model-based control of vortex shedding using low-dimensional galerkin models. AIAA-Paper 2003-4262 (2003)

    Google ScholarĀ 

  15. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748ā€“766 (2004)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  16. Heiland, J., Mehrmann, V.: Distributed control of linearized Navier-Stokes equations via discretized input/output maps. Z. Angew. Math. Mech. 92(4), 257ā€“274 (2012)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  17. Heiland, J., Mehrmann, V., Schmidt, M.: A new discretization framework for input/output maps and its application to flow control. In: King, R. (ed.) Active Flow Control. Papers contributed to the Conference ā€œActive Flow Control II 2010ā€, Berlin, May 26ā€“28, 2010, ppĀ 375ā€“372. Springer, Berlin (2010)

    Google ScholarĀ 

  18. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATHĀ  Google ScholarĀ 

  19. Lehmann, O., Luchtenburg, D.M., Noack, B.R., King, R., Morzynski, M., Tadmor, G.: Wake stabilization using POD Galerkin models with interpolated modes. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Conference ECC, Invited Paper 1618 (2005)

    Google ScholarĀ 

  20. Pastoor, M., King, R., Noack, B.R., Dillmann, A., Tadmor, G.: Model-based coherent-structure control of turbulent shear flows using low-dimensional vortex models. AIAA-Paper 2003-4261 (2003)

    Google ScholarĀ 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol.Ā 44. Springer, New York (1983)

    Google ScholarĀ 

  22. Schmidt, M.: Systematic discretization of input/output Maps and other contributions to the control of distributed parameter systems. PhD thesis, TU Berlin, FakultƤt Mathematik, Berlin (2007)

    Google ScholarĀ 

  23. Staffans, O.J.: Well-posed Linear Systems. Cambridge University Press, Cambridge/ New York (2005)

    BookĀ  MATHĀ  Google ScholarĀ 

  24. ThomƩe, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    BookĀ  MATHĀ  Google ScholarĀ 

  25. Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz, Austria (2011)

    Google ScholarĀ 

  26. Werner, D.: Funktionalanalysis. Springer, Berlin (2000)

    MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Heiland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baumann, M., Heiland, J., Schmidt, M. (2015). Discrete Input/Output Maps and their Relation to Proper Orthogonal Decomposition. In: Benner, P., Bollhƶfer, M., Kressner, D., Mehl, C., Stykel, T. (eds) Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-15260-8_21

Download citation

Publish with us

Policies and ethics