Skip to main content
  • 2529 Accesses

Abstract

Eigenvalue problems involving large, sparse matrices with Hamiltonian or related structure arise in numerous applications. Hamiltonian problems can be transformed to symplectic or skew-Hamiltonian problems and then solved. This chapter focuses on the transformation to skew-Hamiltonian form and solution by the SHIRA method. Related to, but more general than, Hamiltonian matrices are alternating and palindromic pencils. A SHIRA-like method that operates on alternating (even) pencils Mλ N and can be used even when N is singular, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apel, T., Mehrmann, V., Watkins, D.: Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Eng. 191, 4459–4473 (2002)

    Article  MATH  Google Scholar 

  2. Apel, T., Mehrmann, V., Watkins, D.: Numerical solution of large-scale structured polynomial or rational eigenvalue problems. In: Cucker, F., DeVore, R., Olver, P., Suli, E. (eds.) Foundations of Computational Mathematics. London Mathematical Society Lecture Note Series, vol. 312, pp. 137–157. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  4. Benner, P., Byers, R., Fassbender, H., Mehrmann, V., Watkins, D.: Cholesky-like factorizations of skew-symmetric matrices. Electron. Trans. Numer. Anal. 11, 85–93 (2000)

    MATH  MathSciNet  Google Scholar 

  5. Benner, P., Effenberger, C.: A rational SHIRA method for the Hamiltonian eigenvalue problems. Taiwan. J. Math. 14, 805–823 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Benner, P., Fassbender, H.: An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl. 263, 75–111 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benner, P., Fassbender, H.: An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem. SIAM J. Matrix Anal. Appl. 22, 682–713 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bunch, J.R.: A note on the stable decomposition of skew-symmetric matrices. Math. Comput. 38, 475–479 (1982)

    MATH  MathSciNet  Google Scholar 

  9. Hall, B.C.: Lie Groups, Lie Algebras, and Representations, an Elementary Introduction. Graduate Texts in Mathematics, vol. 222. Springer, New York (2003)

    Google Scholar 

  10. Hwang, T.-M., Lin, W.-W., Mehrmann, V.: Numerical solution of quadratic eigenvalue problems with structure-preserving methods. SIAM J. Sci. Comput. 24, 1283–1302 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral properties of operator pencils generated by elliptic boundary value problems for the Lamé system. Rostock. Math. Kolloq. 51, 5–24 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Leguillon, D.: Computation of 3D-singularities in elasticity. In: Costabel, M., et al. (eds.) Boundary Value Problems and Integral Equations in Nonsmooth Domains. Lecture Notes in Pure and Applied Mathematics, vol. 167, pp. 161–170. Marcel Dekker, New York (1995). Proceedings of the Conference, Held at the CIRM, Luminy, 3–7 May 1993

    Google Scholar 

  13. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  14. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 971–1004 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mehrmann, V.: The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Lecture Notes in Control and Information Sciences, vol. 163. Springer, Heidelberg (1991)

    Google Scholar 

  17. Mehrmann, V., Schröder, C., Simoncini, V.: An implicitly-restarted Krylov subspace method for real symmetic/skew-symmetric eigenproblems. Linear Algebra Appl. 436, 4070–4087 (2009)

    Article  Google Scholar 

  18. Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltoninan/Hamiltonian pencils. SIAM J. Sci. Comput. 22, 1905–1925 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mehrmann, V., Watkins, D.: Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106–118 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. In: Golub, G., Greenbaum, A., Luskin, M. (eds.) Recent Advances in Iterative Methods. IMA Volumes in Mathematics and Its Applications, vol. 60, pp. 149–164. Springer, New York (1994)

    Chapter  Google Scholar 

  21. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: matrix pairs. Linear Algebra Appl. 197–198, 283–295 (1994)

    MathSciNet  Google Scholar 

  22. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems, III: complex shifts for real matrices. BIT 34, 165–176 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Schmitz, H., Volk, K., Wendland, W.L.: On three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equ. 9, 323–337 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schröder, C.: A canonical form for palindromic pencils and palindromic factorizations. Preprint 316, DFG Research Center Matheon, Mathematics for key technologies in Berlin, TU Berlin (2006)

    Google Scholar 

  25. Schröder, C.: Palindromic and even eigenvalue problems – analysis and numerical methods. PhD thesis, Technical University Berlin (2008)

    Google Scholar 

  26. Sorensen, D.C.: Passivity preserving model reduction via interpolation of spectral zeros. Syst. Control Lett. 54, 347–360 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stewart, G.W.: Addendum to “a Krylov-Schur algorithm for large eigenproblems”. SIAM J. Matrix Anal. Appl. 24, 599–601 (2002)

    Article  MathSciNet  Google Scholar 

  29. Watkins, D.S.: On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl. 385, 23–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Watkins, D.S.: The matrix eigenvalue problem. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Watkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Watkins, D.S. (2015). Large-Scale Structured Eigenvalue Problems. In: Benner, P., Bollhöfer, M., Kressner, D., Mehl, C., Stykel, T. (eds) Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-15260-8_2

Download citation

Publish with us

Policies and ethics