Skip to main content

Effects of Long Term Consumption of High Calorie Diet on Neurological Disorders

  • Chapter
High Calorie Diet and the Human Brain
  • 1437 Accesses

Abstract

Long-term consumption of high calorie diet, which is enriched in saturated fats, cholesterol, and n-6 fatty acids produces obesity, insulin resistance, oxidative stress, low grade inflammation, and cognitive dysfunction due to abnormalities in mitochondrial function and marked alterations in signal transduction processes. High calorie diet also alters hippocampal morphology/plasticity leading to the impairment of cognitive function in rodents. This brain region is involved in learning and memory formation. Accumulating evidence suggests that long term consumption of high calorie diet not only causes oxidative stress through multiple biochemical mechanisms, but also promotes low grade chronic inflammation through increased expression of proinflammatory cytokines. Onset of chronic inflammation and oxidative stress promotes type 2 diabetes, and metabolic syndrome, which are risk factors for stroke, Alzheimer disease, and depression. In addition, long term consumption of high calorie diet also suppresses adaptive cellular response signaling by inhibiting expression of neurotrophic factors, protein chaperons, DNA-repair proteins, autophagy, and mitochondrial biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • aan het Rot M, Mathew SJ, Charney DS (2009) Neurobiological mechanisms in major depressive disorder. CMAJ 180:305–313

    PubMed Central  PubMed  Google Scholar 

  • Abarquez RF Jr (2003) Microvascular disease relevance in the hypertension syndrome. Clin Hemorheol Microcirc 29:295–300

    PubMed  Google Scholar 

  • Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 29:525–546

    PubMed  Google Scholar 

  • Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol (Berl) 92:217–231

    CAS  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    PubMed  CAS  Google Scholar 

  • Barcelo A, Pierola J, Lopez-Escribano H, de la Pena M, Soriano JB, Alonso-Fernandez A, Ladaria A, Agustí A (2010) Telomere shortening in sleep apnea syndrome. Respir Med 104:1225

    PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidatives stress. Nat Rev Drug Discov 3:205–214

    PubMed  CAS  Google Scholar 

  • Baydas G, Ozer M, Yasar A, Tuzcu M, Koz ST (2005) Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Res 1046:187–194

    PubMed  CAS  Google Scholar 

  • Becker T, Becker G, Seufert J, Hofmann E, Lange KW, Naumann M (1997) Parkinson’s disease and depression: evidence for an alteration of the basal limbic system detected by transcranial sonography. J Neurol Neurosurg Psychiatry 63:590–596

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, Segers P, Cooman L, Van Damme P, Cassiman P, Criekinge V (2007) Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6:639–647

    PubMed  CAS  Google Scholar 

  • Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, Streb JW, Guo H, Rubio A, Van Nostrand W, Miano JM, Zlokovic BV (2009) SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nat Cell Biol 11:143–153

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bengmark S (2013) Processed foods, dysbiosis, systemic inflammation, and poor health. Curr Nutr Food Sci 9:113–143

    CAS  Google Scholar 

  • BenMoyal-Segal L, Soreq H (2006) Gene-environment interactions in sporadic Parkinson’s disease. J Neurochem 97:1740–1755

    PubMed  CAS  Google Scholar 

  • Benoit M, Berrut G, Doussaint J, Bakchine S, Bonin-Guillaume S, Frémont P, Gallarda T, Krolak-Salmon P, Marquet T, Mékiès C, Sellal F, Schuck S, David R, Robert P (2012) Apathy and depression in mild Alzheimer’s disease: a cross-sectional study using diagnostic criteria. J Alzheimers Dis 31:325–334

    PubMed  Google Scholar 

  • Bhat NR (2010) Linking cardiometabolic disorders to sporadic Alzheimer’s disease: a perspective on potential mechanisms and mediators. J Neurochem 115:551–562

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blitzer RD, Iyengar R, Landau EM (2005) Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry 57:113–119

    PubMed  CAS  Google Scholar 

  • Bousser MG (2012) Stroke prevention: an update. Front Med 6:22–34

    PubMed  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–12510

    PubMed  CAS  Google Scholar 

  • Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS (2006) Pesticides and Parkinson’s disease—is there a link? Environ Health Perspect 114:156–164

    PubMed Central  PubMed  Google Scholar 

  • Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    PubMed  CAS  Google Scholar 

  • Cai D (2009) NFkappaB-mediated metabolic inflammation in peripheral tissues versus central nervous system. Cell Cycle 8:2542–2548

    PubMed  CAS  Google Scholar 

  • Carrero J, Stenvinkel P, Fellstrom B, Qureshi AR, Lamb K, Heimburger O, Bárány P, Radhakrishnan K, Lindholm B, Soveri I, Nordfors L, Shiels PG (2008) Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J Intern Med 263:302–312

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Dis Mon 56:484–546

    PubMed Central  PubMed  Google Scholar 

  • Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823

    PubMed  CAS  Google Scholar 

  • Champaneri S, Wand GS, Malhotra SS, Casagrande SS, Golden SH (2010) Biological basis of depression in adults with diabetes. Curr Diab Rep 10:396–405

    PubMed  CAS  Google Scholar 

  • Chen H, O’Reilly E, McCullough ML, Rodriguez C, Schwarzschild MA, Calle EE, Thun MJ, Ascherio A (2007) Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol 165:998–1006

    PubMed Central  PubMed  Google Scholar 

  • Choi HK, Liu S, Curhan G (2005) Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 52:283–289

    PubMed  Google Scholar 

  • Chow N, Bell RD, Deane R, Streb JW, Chen J, Brooks A, Van Nostrand W, Miano JM, Zlokovic BV (2007) Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc Natl Acad Sci U S A 104:823–828

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55:1449–1455

    PubMed  CAS  Google Scholar 

  • Clouse RE, Lustman PJ, Freedland KE, Griffith LS, McGill JB, Carney RM (2003) Depression and coronary heart disease in women with diabetes. Psychosom Med 65:376–383

    PubMed  Google Scholar 

  • Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152

    PubMed  CAS  Google Scholar 

  • Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr (1998) Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 50:164–168

    PubMed  CAS  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davidson RJ, Pizzagalli D, Nitschike JB, Putnam K (2002) Depression: perspectives from affective neuroscience. Annu Rev Psychol 53:545–574

    PubMed  Google Scholar 

  • Davidson TL, Monnot A, Neal AU, Martin AA, Horton JJ, Zheng W (2012) The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav 107:26–33

    PubMed Central  PubMed  CAS  Google Scholar 

  • Daviglus ML, Bell CC, Berrettini W, Bowen PE, Connolly ES Jr, Cox NJ, Dunbar-Jacob JM, Granieri EC, Hunt G, McGarry K, Patel D, Potosky AL, Sanders-Bush E, Silberberg D, Trevisan M (2010) National Institutes of Health State-of-the-Science Conference statement: preventing Alzheimer disease and cognitive decline. Ann Intern Med 153:176–181

    PubMed  Google Scholar 

  • de la Monte SM (2009) Insulin resistance and Alzheimer’s disease. BMB Rep 42:475–481

    PubMed  Google Scholar 

  • de la Monte SM, Tong M (2013) Insulin resistance and metabolic failure underlie Alzheimer disease. In: Farooqui T, Farooqui AA (eds) Metabolic syndrome and neurological disorders. Wiley, Oxford, pp 1–30

    Google Scholar 

  • den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MM (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–175

    Google Scholar 

  • Dhungana H, Rolova T, Savchenko E, Wojciechowski S, Savolainen K, Ruotsalainen AK, Sullivan PM, Koistinaho J, Malm T (2013) Western-type diet modulates inflammatory responses and impairs functional outcome following permanent middle cerebral artery occlusion in aged mice expressing the human apolipoprotein E4 allele. J Neuroinflammation 10:102

    PubMed Central  PubMed  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Thomson S, Oh PI, Van Uum S, Koren G, Lanctôt KL (2010) Relationship between hair cortisol concentrations and depressive symptoms in patients with coronary artery disease. Neuropsychiatr Dis Treat 6:393–400

    PubMed Central  PubMed  CAS  Google Scholar 

  • Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI (2013) Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta 1832:527–541

    PubMed  CAS  Google Scholar 

  • Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC (2007) Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am J Clin Nutr 85:910–918

    PubMed  CAS  Google Scholar 

  • Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, Nemeroff CB, Bremner JD, Carney RM, Coyne JC, Delong MR, Frasure-Smith N, Glassman AH, Gold PW, Grant I, Gwyther L, Ironson G, Johnson RL, Kanner AM, Katon WJ, Kaufmann PG, Keefe FJ, Ketter T, Laughren TP, Leserman J, Lyketsos CG, McDonald WM, McEwen BS, Miller AH, Musselman D, O’Connor C, Petitto JM, Pollock BG, Robinson RG, Roose SP, Rowland J, Sheline Y, Sheps DS, Simon G, Spiegel D, Stunkard A, Sunderland T, Tibbits P Jr, Valvo WJ (2005) Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 58:175–189

    PubMed  Google Scholar 

  • Ewing GW (2010) Mathematical modeling the neuroregulation of blood pressure using a cognitive top-down approach. N Am J Med Sci 2:341–352

    PubMed Central  PubMed  Google Scholar 

  • Faraci FM (2003) Hyperhomocysteinemia, a million ways to lose control. Arterioscler Thromb Vasc Biol 23:371–373

    PubMed  CAS  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, Alzheimer, and depression. Springer, New York

    Google Scholar 

  • Farooqui AA (2014) Inflammation and oxidative stress in neurological disorders. Springer, New York

    Google Scholar 

  • Farooqui AA, Horrocks LA (1994) Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol 36:267–323

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York

    Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  • Farooqui AA, Ong WY, Farooqui T (2010) Lipid mediators in the nucleus: their potential contribution to Alzheimer’s disease. Biochim Biophys Acta 1801:906–916

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762

    PubMed  CAS  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167

    PubMed Central  PubMed  CAS  Google Scholar 

  • Findeis MA (2007) The role of amyloid beta peptide 42 in Alzheimer’s disease. Pharmacol Ther 116:266–286

    PubMed  CAS  Google Scholar 

  • Fotuhi M, Mohassel P, Yaffe K (2009) Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol 5:140–152

    PubMed  CAS  Google Scholar 

  • Freeman LR, Granholm AC (2012) Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab 32:643–653

    PubMed Central  PubMed  CAS  Google Scholar 

  • Freeman LR, Haley-Zitlin V, Stevens C, Granholm AC (2011) Diet-induced effects on neuronal and glial elements in the middle-aged rat hippocampus. Nutr Neurosci 14:32–44

    PubMed Central  PubMed  CAS  Google Scholar 

  • Funaki M (2009) Saturated fatty acids and insulin resistance. J Med Invest 56:88–92

    PubMed  Google Scholar 

  • Gallagher S (2004) Neurocognitive models of schizophrenia: a neurophenomenological critique. Psychopathology 37:8–19

    PubMed  Google Scholar 

  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    PubMed  CAS  Google Scholar 

  • Gasparini L, Netzer WJ, Greengard P, Xu H (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 23:288–293

    PubMed  CAS  Google Scholar 

  • Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:S74–S78

    PubMed  CAS  Google Scholar 

  • Gorelick PB (2010) Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Innate Inflam Stroke 1207:155–162

    Google Scholar 

  • Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12:385–390

    PubMed  Google Scholar 

  • Granholm AC, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K (2008) Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 14:133–145

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4:179–189

    PubMed  Google Scholar 

  • Haan MN (2006) Therapy Insight: type 2 diabetes mellitus and the risk of late-onset alzheimer’s disease. Nat Clin Pract Neurol 2:159–166

    PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    PubMed  CAS  Google Scholar 

  • Harris WS (2008) The omega-3 index as a risk factor for coronary heart disease. Am J Clin Nutr 87:1997S–2002S

    PubMed  CAS  Google Scholar 

  • Holt RI, de Groot M, Golden SH (2014) Diabetes and depression. Curr Diab Rep 14:491

    PubMed  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hsu TM, Kanoski SE (2014) Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci 6:88

    PubMed Central  PubMed  Google Scholar 

  • Ince PG, Codd GA (2005) Return of the cycad hypothesis – does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol Appl Neurobiol 31:345–353

    PubMed  CAS  Google Scholar 

  • Ito H, Kawashima R, Awata S, Ono S, Sato K, Goto R, Koyama M, Sato M, Fukuda H (1996) Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 37:410–414

    PubMed  CAS  Google Scholar 

  • Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, Boeve BF, Ivnik RJ, Smith GE, Cha RH, Tangalos EG, Petersen RC (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600

    PubMed Central  PubMed  Google Scholar 

  • Jaworski J, Sheng M (2006) The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol 34:205–219

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116:1111–1162

    PubMed  CAS  Google Scholar 

  • Jolivalt CG, Lee CA, Beiswenger KK, Smith JL, Orlov M, Torrance MA, Masliah E (2008) Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 86:3265–3274

    PubMed  CAS  Google Scholar 

  • Kalmijn S (2000) Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J Nutr Health Aging 4:202–207

    PubMed  CAS  Google Scholar 

  • Kamel F, Hoppin JA (2004) Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112:950–958

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanoski SE (2012) Cognitive and neuronal systems underlying obesity. Physiol Behav 106:337–344

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanoski SE, Davidson TL (2011) Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 103:59–68

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanoski SE, Meisel RL, Mullins AJ, Davidson TL (2007) The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav Brain Res 182:57–66

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59:169–186

    PubMed  Google Scholar 

  • Keifer MC, Firestone J (2007) Neurotoxicity of pesticides. J Agromedicine 12:17–25

    PubMed  Google Scholar 

  • Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3(6):453–462

    PubMed  CAS  Google Scholar 

  • Kimbrell TA, Ketter TA, George MS, Little JT, Benson BE, Willis MW, Herscovitch P, Post RM (2002) Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry 51:237–252

    PubMed  CAS  Google Scholar 

  • Kleinridders A, Schenten D, Könner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Brüning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259

    PubMed Central  PubMed  CAS  Google Scholar 

  • Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671

    PubMed  CAS  Google Scholar 

  • Knol MJ, Twisk JW, Beekman AT, Heine RJ, Snoek FJ, Pouwer F (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49:837–845

    PubMed  CAS  Google Scholar 

  • Koponen E, Lakso M, Castrén E (2004) Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 130:81–94

    PubMed  CAS  Google Scholar 

  • Kulstad JJ, Green PS, Cook DG, Watson GS, Reger MA, Baker LD, Plymate SR, Asthana S, Rhoads K, Mehta PD, Craft S (2006) Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology 66:1506–1510

    PubMed  CAS  Google Scholar 

  • Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A (2013) Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol 28:67–77

    PubMed  Google Scholar 

  • Lebedev AV, Beyer MK, Fritze F, Westman E, Ballard C, Aarsland D (2014) Cortical changes associated with depression and antidepressant use in Alzheimer and Lewy body dementia: an MRI surface-based morphometric study. Am J Geriatric Psychiatry 22:4–13

    Google Scholar 

  • Lee J, Sparrow D, Vokonas PS, Landsberg L, Weiss ST (1995) Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistance syndrome. The Normative Aging Study. Am J Epidemiol 142:288–294

    PubMed  CAS  Google Scholar 

  • Lee H, Kim H-J, Kim J-M, Chang N (2004) Effects of dietary folic acid supplementation on cerebrovascular endothelial dysfunction in rats with induced hyperhomocysteinemia. Brain Res 996:139–147

    PubMed  CAS  Google Scholar 

  • Lee GJ, Lu PH, Hua X, Lee S, Wu S, Nguyen K, Teng E, Leow AD, Jack CR Jr, Toga AW, Weiner MW, Bartzokis G, Thompson PM, Alzheimer’s Disease Neuroimaging Initiative (2012) Depressive symptoms in mild cognitive impairment predict greater atrophy in alzheimer's disease-related regions. Biol Psychiatry 71:814–821

    PubMed Central  PubMed  Google Scholar 

  • Levinson DF (2006) The genetics of depression: a review. Biol Psychiatry 60:84–92

    PubMed  CAS  Google Scholar 

  • Li R, Zhang H, Wang W, Wang X, Huang Y, Huang C (2010) Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur J Pharmacol 628:140–147

    PubMed  CAS  Google Scholar 

  • Lin J, Epel E, Blackburn E (2012) Telomeres and lifestyle factors: roles in cellular aging. Mutat Res 730:85–910

    PubMed  CAS  Google Scholar 

  • Lipton SA, Kim W-K, Choi Y-B, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94:5923–5928

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czéh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 20:1–1710

    PubMed  CAS  Google Scholar 

  • Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 9:819–830

    PubMed Central  PubMed  CAS  Google Scholar 

  • Madonna R, De Caterina R (2011) Cellular and molecular mechanisms of vascular injury in diabetes–part I: pathways of vascular disease in diabetes. Vascul Pharmacol 54:68–74

    PubMed  CAS  Google Scholar 

  • Maes M, Berk M, Goehler L, Song C, Anderson G, Galecki P, Lepnard B (2012) Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maesako M, Uemura K, Kubota M, Kuzuya A, Sasaki K, Hayashida N, Asada-Utsugi M, Watanabe K, Uemura M, Kihara T, Takahashi R, Shimohama S, Kinoshita A (2012) Exercise is more effective than diet control in preventing high fat diet-induced beta-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice. J Biol Chem 287:23024–23033

    PubMed Central  PubMed  CAS  Google Scholar 

  • Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62:712–718

    PubMed  CAS  Google Scholar 

  • Mattson MP (2009) Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 44:625–633

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    PubMed  CAS  Google Scholar 

  • McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS (2010) Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 93:546–553

    PubMed Central  PubMed  CAS  Google Scholar 

  • Melnik BC (2012) Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 3:38–53

    PubMed Central  PubMed  Google Scholar 

  • Michaelis EK (2012) Selective neuronal vulnerability in the hippocampus: relationship to neurological diseases and mechanisms for differential sensitivity of neurons to stress. In: Bartsch (ed) The clinical neurobiology of the hippocampus: an integrative review. Oxford University Press, Oxford, pp 54–76

    Google Scholar 

  • Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 10:803–814

    Google Scholar 

  • Mommersteeg PM, Herr R, Pouwer F, Holt RI, Loerbroks A (2013) The association between diabetes and an episode of depressive symptoms in the 2002 World Health Survey: an analysis of 231, 797 individuals from 47 countries. Diabetic Med 30:e208–e214

    PubMed  CAS  Google Scholar 

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60:940–946

    PubMed  Google Scholar 

  • Moylan S, Maes M, Wray NR, Berk M (2012) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606

    PubMed  Google Scholar 

  • O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988–1009

    PubMed Central  PubMed  Google Scholar 

  • Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM (2006) Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281:39413–39423

    PubMed  CAS  Google Scholar 

  • O’Keefe JH, Gheewala NM, O’Keefe JO (2008) Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 51:249–255

    PubMed  Google Scholar 

  • Pang PT, Lu B (2004) Mechanisms of late-phase LTP and long-term memory in normal and aging hippocampus. Aging Res Rev 4:407–430

    Google Scholar 

  • Park M, Ross GW, Petrovitch H, White LR, Masaki KH, Nelson JS, Tanner CM, Curb JD, Blanchette PL, Abbott RD (2005) Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology 64:1047–1051

    PubMed  CAS  Google Scholar 

  • Perlis RH, Smoller JW, Mysore J, Sun M, Gillis T, Purcell S, Rietschel M, Nothen MM, Witt S, Maier W, Iosifescu DV, Sullivan P, Rush AJ, Fava M, Breiter H, Macdonald M, Gusella J (2010) Prevalence of incompletely penetrant Huntington’s disease alleles among individuals with major depressive disorder. Am J Psychiatry 167:574–579

    PubMed Central  PubMed  Google Scholar 

  • Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ (2010) Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 10:25–32

    Google Scholar 

  • Popa-Wagner A, Carmichael ST, Kokaja Z, Kessler C, Walker LC (2007) The response of the aged brain to stroke: too much, too soon? Curr Neurovasc Res 4:216–227

    PubMed  CAS  Google Scholar 

  • Posey KA, Clegg DJ, Printz DJ, Byun J, Morton GJ, Vivekanandan-Giri A, Pennathur S, Baskin DG, Heinecke JW, Woods SC, Schwartz MW, Niswender KD (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 296:E1003–E1012

    PubMed Central  PubMed  CAS  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    PubMed  CAS  Google Scholar 

  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR (1998) Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 23:81–88

    PubMed  CAS  Google Scholar 

  • Price JL, McKeel DW Jr, Buckles VD, Roe CM, Xiong C, Grundman M, Hansen LA, Petersen RC, Parisi JE, Dickson DW, Smith CD, Davis DG, Schmitt FA, Markesbery WR, Kaye J, Kurlan R, Hulette C, Kurland BF, Higdon R, Kukull W, Morris JC (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30:1026–1036

    PubMed Central  PubMed  Google Scholar 

  • Purkayastha S, Zhang G, Cai D (2011) Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nat Med 17:883–887

    PubMed Central  PubMed  CAS  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    PubMed  Google Scholar 

  • Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301

    PubMed  CAS  Google Scholar 

  • Richard E, Brayne C (2014) Dementia: mild cognitive impairment – not always what it seems. Nat. Rev. Neurol 10:130–131

    Google Scholar 

  • Ries ML, Carlsson CM, Rowley HA, Sager MA, Gleason CE, Asthana S, Johnson SC (2008) Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc 56:920–934

    PubMed Central  PubMed  Google Scholar 

  • Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    PubMed  CAS  Google Scholar 

  • Rotella F, Mannucci E (2013) Diabetes mellitus as a risk factor for depression. A meta-analysis of longitudinal studies. Diabetes Res Clin Pract 99:98–104

    PubMed  CAS  Google Scholar 

  • Rustad JK, Musselman DL, Nemeroff CB (2011) The relationship of depression and diabetes: pathophysiological and treatment implications. Psychoneuroendocrinology 36:1276–1286

    PubMed  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391–418

    PubMed  CAS  Google Scholar 

  • Seidl SE, Santiago JA, Bilyk H, Potashkin JA (2014) The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci 6:36

    PubMed Central  PubMed  Google Scholar 

  • Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532

    PubMed Central  PubMed  CAS  Google Scholar 

  • Seneff S, Wainwright G, Mascitelli L (2011) Nutrition and Alzheimer’s disease: the detrimental role of a high carbohydrate diet. Eur J Intern Med 22:134–140

    PubMed  CAS  Google Scholar 

  • Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23:303–310

    PubMed Central  PubMed  Google Scholar 

  • Seshadri S (2006) Elevated plasma homocysteine levels: Risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis 9:393–398

    PubMed  CAS  Google Scholar 

  • Seshadri S, Wolf PA, Beiser AS, Selhub J, Au R, Jacques PF, Yoshita M, Rosenberg IH, D’Agostino RB, DeCarli C (2008) Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study. Arch Neurol 65:642–649

    PubMed Central  PubMed  Google Scholar 

  • Shen C, Guo Y, Luo W, Lin C, Ding M (2013) Serum urate and the risk of Parkinson’s disease: results from a meta-analysis. Can J Neurol Sci 40:73–79

    PubMed  Google Scholar 

  • Shoelson SE, Goldfine AB (2009) Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med 15:373–374

    PubMed Central  PubMed  CAS  Google Scholar 

  • Simopoulos AP (2009) Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: medical implications. World Rev Nutr Diet 100:1–21

    PubMed  CAS  Google Scholar 

  • Simopoulos AP (2013) Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease. Nutrients 5:2901–2923

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6:551–559

    PubMed Central  PubMed  CAS  Google Scholar 

  • Skurk C, Walsh K (2004) Death receptor induced apoptosis, a new mechanism of homocysteine-mediated endothelial cell cytotoxicity. Hypertension 43:1168–1170

    PubMed  CAS  Google Scholar 

  • Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425

    PubMed  Google Scholar 

  • Son JH, Han DH, Min KJ, Kee BS (2013) Correlation between gray matter volume in the temporal lobe and depressive symptoms in patients with Alzheimer’s disease. Neurosci Lett 548:15–20

    PubMed  CAS  Google Scholar 

  • Sonnen JA, Larson EB, Haneuse S, Woltjer R, Li G, Crane PK, Craft S, Montine TJ (2009) Neuropathology in the adult changes in thought study: a review. J Alzheimers Dis 18:703–711

    PubMed Central  PubMed  Google Scholar 

  • Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088

    PubMed Central  PubMed  Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157:1552–1562

    PubMed  CAS  Google Scholar 

  • Swomley AM, Förster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta 1842:1248–1257

    PubMed  CAS  Google Scholar 

  • Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338

    PubMed Central  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    PubMed  CAS  Google Scholar 

  • Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312

    PubMed  CAS  Google Scholar 

  • Troen AM (2005) The central nervous system in animal models of hyperhomocysteinemia. Prog Neuropsychopharmacol Biol Psychiatry 29:1140–1151

    PubMed  CAS  Google Scholar 

  • Tsai CF, Hung CW, Lirng JF, Wang SJ, Fuh JL (2013) Differences in brain metabolism associated with agitation and depression in Alzheimer’s disease. East Asian Arch Psychiatry 23:86–90

    PubMed  CAS  Google Scholar 

  • Uchino K, Lin R, Zaidi SF, Kuwabara H, Sashin D, Bircher N, Chang YF, Hammer MD, Reddy V, Jovin TG, Vora N, Jumaa M, Massaro L, Billigen J, Boada F, Yonas H, Nemoto EM (2010) Increased cerebral oxygen metabolism and ischemic stress in subjects with metabolic syndrome-associated risk factors: preliminary observations. Transl Stroke Res 1:178–183

    PubMed Central  PubMed  Google Scholar 

  • Valladolid-Acebes I, Merino B, Principato A, Fole A, Barbas C, Lorenzo MP, García A, Del Olmo N, Ruiz-Gayo M, Cano V (2012) High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission. Am J Physiol Endocrinol Metab 302:E396–E402

    PubMed  CAS  Google Scholar 

  • Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrançois D, Virgili J, Planel E, Giguere Y, Marette A, Calon F (2014) Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes. pii: DB_140375

    Google Scholar 

  • Villegas R, Salim A, Flynn A, Perry IJ (2004) Prudent diet and the risk of insulin resistance. Nutr Metab Cardiovasc Dis 14:334–343

    PubMed  CAS  Google Scholar 

  • Villegas R, Yang G, Gao YT, Cai H, Li H, Zheng W, Shu XO (2010) Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women: the Shanghai Women’s Health Study. Int J Epidemiol 39:889–899

    PubMed Central  PubMed  Google Scholar 

  • Wang S, Sun Z, Guo Y, Yuan Y, Yang B (2009) Diabetes impairs hippocampal function via advanced glycation end product mediated new neuron generation in animals with diabetes-related depression. Toxicol Sci 111:72–79

    PubMed  CAS  Google Scholar 

  • Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166:561–567

    PubMed Central  PubMed  CAS  Google Scholar 

  • White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim SO, Hise TL, Keller JN, Ingram DK, Morrison CD, Bruce-Keller AJ (2009) Effects of high fat diet on Morris maze performance, oxidative stress and inflammation in rats: contributions of maternal diet. Neurobiol Dis 35:3–13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Williams A (2002) Defining neurodegenerative diseases. BMJ 324:1465–1466

    PubMed Central  PubMed  Google Scholar 

  • Wilson RS, Arnold SE, Schneider JA, Li Y, Bennett DA (2007) Chronic distress, age-related neuropathology, and late-life dementia. Psychosom Med 69:47–53

    PubMed  Google Scholar 

  • Winchester J, Dick MB, Gillen D, Reed B, Miller B, Tinklenberg J, Mungas D, Chui H, Galasko D, Hewett L, Cotman CW (2012) Walking stabilizes cognitive functioning in Alzheimer’s disease (AD) across one year. Arch Gerontol Geriatr 56:96–103

    PubMed Central  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    PubMed  Google Scholar 

  • Wurtman RJ (2005) Genes, stress, and depression. Metabolism 54(Suppl 1):16–19

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Matsui T, Nakamura K, Takeuchi M, Inoue H (2008) Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gammaactivation. Protein Pept Lett 15:850–853

    PubMed  CAS  Google Scholar 

  • Yin F, Sancheti YH, Cadenas E (2012) Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17:1714–1727

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    PubMed  CAS  Google Scholar 

  • Zanni GR, Wick JY (2011) Telomeres: unlocking the mystery of cell division and aging. Consult Pharm 26:78–90

    PubMed  Google Scholar 

  • Zhang X, Dong F, Ren J, Driscoll MJ, Culver B (2005) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191:318–325

    PubMed  CAS  Google Scholar 

  • Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    PubMed  CAS  Google Scholar 

  • Zylberstein DE, Lissner L, Bjorkelund C, Mehlig K, Thelle DS, Gustafson D, Ostling S, Waern M, Guo X, Skoog I (2009) Midlife homocysteine and late-life dementia in women, 2009. A prospective population study. Neurobiol Aging 32:380–386

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A.A. (2015). Effects of Long Term Consumption of High Calorie Diet on Neurological Disorders. In: High Calorie Diet and the Human Brain. Springer, Cham. https://doi.org/10.1007/978-3-319-15254-7_9

Download citation

Publish with us

Policies and ethics