Skip to main content

Are Today’s SHM Procedures Suitable for Tomorrow’s BIGDATA?

  • Conference paper
Structural Health Monitoring and Damage Detection, Volume 7

Abstract

Large SHM datasets often result from special applications such as long-term monitoring, dense sensor arrays, or high sampling rates. Through the development of novel sensing techniques as well as advances in sensing devices and data acquisition technology, it is expected that such large volumes of measurement data become commonplace. In anticipation of datasets magnitudes larger than today’s, it is important to evaluate current SHM processing methods at BIGDATA standards and identify potential limitations within computational procedures. This paper will focus on the processing of large SHM datasets and the computational sensitivity of common SHM procedures. Processing concerns encompass efficiency and scalability of SHM software, particularly the computational sensitivity of common system identification and damage detection algorithms with respect to a large amount of sensors and samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Hung Byers A (2011) Big data: the next frontier for innovation, competition, and productivity, p 143. Retrieved from http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation

  2. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19(90):297–301

    Article  MATH  MathSciNet  Google Scholar 

  3. Mathworks (2014) Functions documentation. Retrieved from http://www.mathworks.com/help/matlab/functionlist.html

  4. Van Overschee P, De Moor B (1992) N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1):75–93

    Article  Google Scholar 

  5. He X, De Roeck G (1997) System identification of mechanical structures by a high-order multivariate autoregressive model. Comput Struct 64(1–4):341–351

    Article  MATH  Google Scholar 

  6. James III GH, Carrie TG, Lauffer JP, James GH, Carne TG, Ill GHJ (1993) The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines, Albuquerque, p 46

    Google Scholar 

  7. Chang M, Pakzad SN (2013) Observer Kalman filter identification for output-only systems using interactive structural modal identification toolsuite (SMIT). J Bridg Eng 19(5):04014002. doi:10.1061/(ASCE)BE.1943-5592.0000530

    Article  Google Scholar 

  8. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878. doi:10.1006/mssp.1999.1249

    Article  Google Scholar 

  9. Pakzad SN, Fenves GL (2009) Statistical analysis of vibration modes of a suspension bridge using spatially dense wireless sensor network. J~Struct Eng 135(7):863–872. doi:10.1061/(ASCE) ST.1943-541X.0000033

    Article  Google Scholar 

  10. Chang M, Pakzad SN (2012) Modified natural excitation technique for stochastic modal identification. J Struct Eng 139(10):1753–1762. doi:10.1061/(ASCE) ST.1943-541X.0000559

    Article  Google Scholar 

  11. Matarazzo TJ, Pakzad SN (2015) Structural Identification using Expectation Maximization (STRIDE): an iterative output-only method for modal identification. (ASCE) J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000951

  12. Sim S, Spencer Jr BF (2009) Decentralized strategies for monitoring structures using wireless smart sensor networks. Newmark Structural Engineering Laboratory (NSEL) at the Department of Civil and Environmental Engineering of University of Illinois at Urbana-Champaign

    Google Scholar 

  13. Flynn EB, Kpotufe S, Harvey D, Figueiredo E, Taylor S, Dondi D, Mollov T, Todd MD, Rosing ST, Park G, Farrar C (2010) SHMTools: a new embeddable software package for SHM applications. In: Tomizuka M (ed) Sensors and smart structures technologies for civil, mechanical, and aerospace systems. Society of Photo-Optical Instrumentation Engineers, San Diego

    Google Scholar 

  14. Sohn H, Farrar CR (2001) Damage diagnosis using time series analysis of vibration signals. Smart Mater Struct 10(3):446–451. doi:10.1088/0964-1726/10/3/304

    Article  Google Scholar 

  15. Worden K, Manson G, Fieller NRJ (2000) Damage detection using outlier analysis. J Sound Vib 229(3):647–667. doi:10.1006/jsvi.1999.2514

    Article  Google Scholar 

  16. Lei Y, Kiremidjian AS, Nair KK, Lynch JP, Law KH, Kenny TW, Carryer ED, Kottapalli A (2003) Statistical damage detection using time series analysis on a structural health monitoring benchmark problem. In: Proceedings of the 9th international conference on applications of statistics and probability in civil engineering. pp. 6–9

    Google Scholar 

  17. Nair KK, Kiremidjian AS, Law KH (2006) Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. J Sound Vib 291(1–2):349–368. doi:10.1016/j.jsv.2005.06.016

    Article  Google Scholar 

  18. Nigro MB, Pakzad SN, Dorvash S (2014) Localized structural damage detection: a change point analysis. J Comput Aided Civ Infrastruct Eng 29(6):416–432. doi:10.1111/mice.12059

    Article  Google Scholar 

  19. Dorvash S, Pakzad SN, Labuz EL, Ricles JM, Hodgson IC (2014) Localized damage detection algorithm and implementation on a large-scale steel beam-to-column moment connection. Earthq Spectra. doi:10.1193/031613EQS069M

  20. Dorvash S, Pakzad SN, Labuz EL (2004) Statistics based localized damage detection using vibration response, (Deutsch 1979)

    Google Scholar 

  21. Shahidi SG, Nigro MB, Pakzad SN, Pan Y (2014) Structural damage detection and localisation using multivariate regression models and two-sample control statistics. Struct Infrastruct Eng, pp 1–17. doi:10.1080/15732479.2014.949277

  22. Yao R, Pakzad SN (2012) Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mech Syst Signal Process 31:355–368. doi:10.1016/j.ymssp.2012.02.014

    Article  Google Scholar 

  23. Figueiredo E, Figueiras J, Park G, Farrar CR, Worden K (2011) Influence of the autoregressive model order on damage detection. J Comput Aided Civ Infrastruct Eng 26(3):225–238. doi:10.1111/j.1467-8667.2010.00685.x

    Article  Google Scholar 

Download references

Acknowledgement

Research funding is partially provided by the National Science Foundation through Grant No. CMMI-1351537 by Hazard Mitigation and Structural Engineering program, and by a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Matarazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Matarazzo, T.J., Shahidi, S.G., Chang, M., Pakzad, S.N. (2015). Are Today’s SHM Procedures Suitable for Tomorrow’s BIGDATA?. In: Niezrecki, C. (eds) Structural Health Monitoring and Damage Detection, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15230-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15230-1_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15229-5

  • Online ISBN: 978-3-319-15230-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics