Skip to main content

Reducing MCMC Computational Cost with a Two Layered Bayesian Approach

  • Conference paper
Model Validation and Uncertainty Quantification, Volume 3

Abstract

One of the major challenges in the implementation sampling techniques in the Bayesian approaches is the computational cost involved with the estimation of the likelihood and/or posterior, especially in problems where the models being updated are computationally expensive. This paper proposes the use of surrogate models in a two-layer Bayesian approach to reduce the computational cost of estimating these PDF. In the first layer, the posterior is written in a traditional manner. The second layer attempts to estimate the PDF of the first layer with a surrogate model. Only a few runs of the structural model are needed to create the required samples. Preliminary results are shown with a numerical example to identify the stiffness of a structural system. Only ten simulations of the structural model are used to estimate the posterior PDF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zárate BA, Caicedo JM (2008) Finite element model updating: multiple alternatives. Eng Struct 30(12):3724–3730

    Article  Google Scholar 

  2. Friswell M, Mottershead JE (1995) Finite element model updating in structural dynamics, vol 38. Springer, Berlin

    MATH  Google Scholar 

  3. Modak S, Kundra T, Nakra B (2002) Prediction of dynamic characteristics using updated finite element models. J Sound Vib 254(3):447–467

    Article  Google Scholar 

  4. Rajan S (1995) Sizing, shape, and topology design optimization of trusses using genetic algorithm. J Struct Eng 121(10):1480–1487

    Article  Google Scholar 

  5. Beck JL, Au S-K (2002) Bayesian updating of structural models and reliability using markov chain monte carlo simulation. J Eng Mech 128(4):380–391

    Article  Google Scholar 

  6. Robert CP, Casella G (2004) Monte Carlo statistical methods, vol 319. Citeseer

    Google Scholar 

  7. El-Beltagy MA, Keane A (1999) Metalmodeling techniques for evolutionary optimization of computationally expensive problems: promises and limitations.

    Google Scholar 

  8. Meckesheimer M, Booker AJ, Barton RR, Simpson TW (2002) Computationally inexpensive metamodel assessment strategies. AIAA J 40(10):2053–2060

    Article  Google Scholar 

  9. Madarshahian R, Caicedo JM, Zambrana DA (2014) Evaluation of a time reversal method with dynamic time warping matching function for human fall detection using structural vibrations. In: Atamturktur HS et al (eds) Model validation and uncertainty quantification, vol 3. Springer, New York, pp 171–176

    Chapter  Google Scholar 

  10. Taguchi G, Yokoyama Y et al (1993) Taguchi methods: design of experiments, vol 4. American Supplier Institute, Dearborn

    Google Scholar 

  11. Owen AB (1992) Orthogonal arrays for computer experiments, integration and visualization. Stat Sin 2(2):439–452

    MATH  MathSciNet  Google Scholar 

  12. Glynn PW, Iglehart DL (1989) Importance sampling for stochastic simulations. Manag Sci 35(11):1367–1392

    Article  MATH  MathSciNet  Google Scholar 

  13. Waggoner DF, Zha T (2003) A gibbs sampler for structural vector autoregressions. J Econ Dyn Control 28(2):349–366

    Article  MATH  MathSciNet  Google Scholar 

  14. Shan S, Wang GG (2010) Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct Multidiscipl Optim 41(2):219–241

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129(4):370–380

    Article  MathSciNet  Google Scholar 

  16. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–423

    Article  MATH  MathSciNet  Google Scholar 

  17. Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20(4):405–421

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang L, Beeson D, Akkaram S, Wiggs G (2005) Gaussian process meta-models for efficient probabilistic design in complex engineering design spaces. In: ASME 2005 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, New York, pp 785–798

    Google Scholar 

  19. Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural optimization using evolution strategies and neural networks. Comput Meth Appl Mech Eng 156(1):309–333

    Article  MATH  Google Scholar 

  20. Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscipl Optim 23(1):1–13

    Article  Google Scholar 

  21. James F (2006) Statistical methods in experimental physics, vol 7. World Scientific, Singapore

    Book  MATH  Google Scholar 

  22. Patil A, Huard D, Fonnesbeck CJ (2010) Pymc: Bayesian stochastic modelling in python. J Stat Softw 35(4):1

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-0846258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Madarshahian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Madarshahian, R., Caicedo, J.M. (2015). Reducing MCMC Computational Cost with a Two Layered Bayesian Approach. In: Atamturktur, H., Moaveni, B., Papadimitriou, C., Schoenherr, T. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15224-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15224-0_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15223-3

  • Online ISBN: 978-3-319-15224-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics