Skip to main content

A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes

  • Conference paper
Model Validation and Uncertainty Quantification, Volume 3

Abstract

This paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms. A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and (iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The mode decomposition results are also compared using a unique dynamic response data collected in a ship-bridge collision accident for ambient excitation with traffic loading, ambient excitation without traffic loading, and impulse excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( \ddot{X}(t),\;\dot{X}(t),\;X(t) \) :

The system acceleration, velocity and displacement, respectively.

ΨTRU :

The true mode shape determined by the modal superposition method.

\( {\hat{\Psi}}_{\ddot{X}}^{\mathrm{ERA}},\;{\hat{\Psi}}_{\dot{X}}^{\mathrm{ERA}},\;{\hat{\Psi}}_X^{\mathrm{ERA}} \) :

The mode shapes estimated with the Eigensystem Realization Algorithm with Natural Excitation Method (NExT-ERA) for \( \ddot{X}(t) \), (t), and X(t), respectively.

\( {\hat{\Psi}}_{\ddot{X}}^{\mathrm{PCA}},\;{\hat{\Psi}}_{\dot{X}}^{\mathrm{PCA}},\;{\hat{\Psi}}_X^{\mathrm{PCA}} \) :

The mode shapes estimated with the Principal Component Analysis (PCA) method for \( \ddot{X}(t) \), (t), and X(t), respectively.

\( {\hat{\Psi}}_{\ddot{X}}^{\mathrm{ICA}},\;{\hat{\Psi}}_{\dot{X}}^{\mathrm{ICA}},\;{\hat{\Psi}}_X^{\mathrm{ICA}} \) :

The mode shapes estimated with the Independent Component Analysis (ICA) method for \( \ddot{X}(t) \), (t), and X(t), respectively.

p TRU :

The true modal coordinate determined by the modal superposition method.

\( {\hat{p}}_{\ddot{X}}^{\mathrm{ERA}},\;{\hat{p}}_{\dot{X}}^{\mathrm{ERA}},\;{\hat{p}}_X^{\mathrm{ERA}} \) :

The modal coordinates estimated with the Eigensystem Realization Algorithm with Natural Excitation Method (NExT-ERA) for \( \ddot{X}(t) \), (t), and X(t), respectively.

\( {\hat{p}}_{\ddot{X}}^{\mathrm{PCA}},\;{\hat{p}}_{\dot{X}}^{\mathrm{PCA}},\;{\hat{p}}_X^{\mathrm{PCA}} \) :

The modal coordinates estimated with the Principal Component Analysis (PCA) method for \( \ddot{X}(t) \), (t), and X(t), respectively.

\( {\hat{p}}_{\ddot{X}}^{\mathrm{ICA}},\;{\hat{p}}_{\dot{X}}^{\mathrm{ICA}},\;{\hat{p}}_X^{\mathrm{ICA}} \) :

The modal coordinates estimated with the Independent Component Analysis (ICA) method for \( \ddot{X}(t) \), (t), and X(t), respectively.

References

  1. Pappa RS, Elliott KB, Schenk A (1992) A consistent-mode indicator for the eigensystem realization algorithm. J Guid Control Dyn 16(5):852–858. Retrieved from http://hdl.handle.net/2060/19920015464

  2. Pappa RS, James GH, Zimmerman DC (1998) Autonomous modal identification of the space shuttle tail rudder. J Spacecr Rockets 35(2):163–169. doi:10.2514/2.3324

  3. Yun H, Nayeri R, Tasbihgoo F, Wahbeh M, Caffrey J, Wolfe R, Sheng L-H (2008) Monitoring the collision of a cargo ship with the Vincent Thomas Bridge. Struct Control Health Monit 15(2):183–206. doi:10.1002/stc.213

  4. Feeny B, Kappagantu R (1998) On the physical interpretation of proper orthogonal modes in vibrations. J Sound Vib. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022460X97913869

  5. Feeny BF, Liang Y (2003) Interpreting proper orthogonal modes of randomly excited vibration systems. J Sound Vib 265(5):953–966. doi:10.1016/S0022-460X(02)01265-8

    Article  Google Scholar 

  6. Kerschen G, Golinval J, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41(1–3):147–169. doi:10.1007/s11071-005-2803-2

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhou W, Chelidze D (2007) Blind source separation based vibration mode identification. Mech Syst Signal Process 21(8):3072–3087. doi:10.1016/j.ymssp.2007.05.007

    Article  Google Scholar 

  8. Smith IF, Saitta S (2008) Improving knowledge of structural system behavior through multiple models. J Struct Eng 134(4):553–561. doi:10.1061/(ASCE)0733-9445(2008)134:4(553)

    Article  Google Scholar 

  9. Posenato D, Lanata F, Inaudi D, Smith IFC (2008) Model-free data interpretation for continuous monitoring of complex structures. Adv Eng Inform 22(1):135–144. doi:10.1016/j.aei.2007.02.002

    Article  Google Scholar 

  10. Antoni J, Chauhan S (2013) A study and extension of second-order blind source separation to operational modal analysis. J Sound Vib 332(4):1079–1106. doi:10.1016/j.jsv.2012.09.016

    Article  Google Scholar 

  11. Roan MJ, Erling JG, Sibul LH (2002) A new, non-linear, adaptive, blind source separation approach to gear tooth failure detection and analysis. Mech Syst Signal Process 16(5):719–740. doi:10.1006/mssp.2002.1504

    Article  Google Scholar 

  12. Poncelet F, Kerschen G, Golinval J (2006) Experimental modal analysis using blind source separation techniques. International Conference on …. Retrieved from http://orbi.ulg.ac.be/handle/2268/18770

  13. Poncelet F, Kerschen G, Golinval J-C, Verhelst D (2007) Output-only modal analysis using blind source separation techniques. Mech Syst Signal Process 21(6):2335–2358. doi:10.1016/j.ymssp.2006.12.005

    Article  Google Scholar 

  14. McNeill S, Zimmerman D (2010) Relating independent components to free-vibration modal responses. Shock Vib 17:161–170. doi:10.3233/SAV-2010-0504

    Article  Google Scholar 

  15. Yang Y, Nagarajaiah S (2013) Output-only modal identification with limited sensors using sparse component analysis. J Sound Vib 332(19):4741–4765. doi:10.1016/j.jsv.2013.04.004

    Article  Google Scholar 

  16. Yu K, Yang K, Bai Y (2014) Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation. Mech Syst Signal Process 45(2):302–316. doi:10.1016/j.ymssp.2013.11.018

    Article  Google Scholar 

  17. Oh CK, Sohn H, Bae I-H (2009) Statistical novelty detection within the Yeongjong suspension bridge under environmental and operational variations. Smart Mater Struct 18(12):125022. doi:10.1088/0964-1726/18/12/125022

    Article  Google Scholar 

  18. Kallinikidou E, Yun H (2013) Application of orthogonal decomposition approaches to long-term monitoring of infrastructure systems. J Eng Mech 139:678–690. doi:10.1061/(ASCE)EM.1943-7889.0000331

  19. Juang JN, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn 8(5):620–627. Retrieved from http://doi.aiaa.org/10.2514/3.20031

  20. James GH, Carne TG, Lauffer JP (1993) The Natural Excitation Technique (NExT) for modal parameter extraction from operating wind turbines. System 1–46. Sandia National Laboratories. Retrieved from http://vibration.shef.ac.uk/doc/1212.pdf

  21. Nayeri RD, Tasbihgoo F, Wahbeh M, Caffrey JP, Masri SF, Conte JP, Elgamal A (2009) Study of time-domain techniques for modal parameter identification of a long suspension bridge with dense sensor arrays. J Eng Mech 135(7):669. doi:10.1061/(ASCE)0733-9399(2009)135:7(669)

    Article  Google Scholar 

  22. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw: the official journal of the International Neural Network Society 13(4–5):411–430. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10946390

  23. Kerschen G, Poncelet F, Golinval J-C (2007) Physical interpretation of independent component analysis in structural dynamics. Mech Syst Signal Process 21(4):1561–1575. doi:10.1016/j.ymssp.2006.07.009

    Article  Google Scholar 

  24. Lus¸ H, Betti R, Longman R (1999) Identification of linear structural systems using earthquake-induced vibration data. Earthq Eng Struct Dyn 28:1449–1467

    Article  Google Scholar 

  25. Smyth AW, Pei J-S, Masri S (2003) System identification of the Vincent Thomas Suspension Bridge using earthquake records. Earthq Eng Struct Dyn 32:339–367

    Article  Google Scholar 

  26. Maia NMM, Silba JMM (1997) Theoretical and experimental modal analysis. Research Studies Press LTD, England

    Google Scholar 

  27. Mariani R, Dessi D (2012) Analysis of the global bending modes of a floating structure using the proper orthogonal decomposition. J Fluids Struct 28:115–134. doi:10.1016/j.jfluidstructs.2011.11.009

    Article  Google Scholar 

  28. Yang Y, Nagarajaiah S (2012) Time-frequency blind source separation using independent component analysis for output-only modal identification of highly damped structures. J Struct Eng 1780–1793. doi:10.1061/(ASCE)ST.1943-541X.0000621

  29. Yun H-B, Park S-H, Mehdawi N, Mokhtari S Chopra M, Reddi LN, Park K-T (in press) Monitoring for close proximity tunneling effects on an existing tunnel using principal component analysis technique with limited sensor data. Tunn Undergr Space Technol

    Google Scholar 

Download references

Acknowledgements

This study was supported in parts by grants from the U.S. National Science Foundation (NSF), the Air Force Office of Scientific Research (AFOSR), and the National Aeronautics and Space Administration (NASA). The assistance of A. Shakal of the California Geology Service and L.-H. Sheng of the California Department of Transportation (Caltrans) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Bum Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Al-Rumaithi, A., Yun, HB., Masri, S.F. (2015). A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes. In: Atamturktur, H., Moaveni, B., Papadimitriou, C., Schoenherr, T. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15224-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15224-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15223-3

  • Online ISBN: 978-3-319-15224-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics