Skip to main content

Use of Mobile Phone Data to Estimate Visitors Mobility Flows

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 8938)

Abstract

Big Data originating from the digital breadcrumbs of human activities, sensed as by-product of the technologies that we use for our daily activities, allows us to observe the individual and collective behavior of people at an unprecedented detail. Many dimensions of our social life have big data “proxies”, such as the mobile calls data for mobility. In this paper we investigate to what extent data coming from mobile operators could be a support in producing reliable and timely estimates of intra-city mobility flows. The idea is to define an estimation method based on calling data to characterize the mobility habits of visitors at the level of a single municipality.

Keywords

  • Big data
  • Urban population
  • Inter-city mobility
  • Data mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15201-1_14
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15201-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    These data consist of location estimations which are generated each time when a mobile device is connected to the cellular network for calls, messages and Internet connections.

References

  1. Andrienko, G., Andrienko, N., Bak, P., Bremm, S., Keim, D., von Landesberger, T., Poelitz, C., Schreck, T.: A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. J. Locat. Based Serv. 4, 3–4 (2010)

    CrossRef  Google Scholar 

  2. Ahas, R., Silm, S., Järv, S., Saluveer, E.: Using mobile positioning data to model locations meaningful to users of mobile phones. J. Urban Technol. 17, 1 (2010)

    CrossRef  Google Scholar 

  3. Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban monitoring using cell phones: a case study in rome. IEEE Trans. Intell. Transp. Syst. 12, 141–151 (2011)

    CrossRef  Google Scholar 

  4. Ratti, C., Sevtsuk, A., Huang, S., Pailer, R.: Mobile Landscapes: Graz in Real Time. MIT Senseable City Lab, Massachusetts (2005)

    Google Scholar 

  5. Furletti, B., Gabrielli, L., Monreale, A., Nanni, M., Pratesi, F., Rinzivillo, S., Giannotti, F., Pedreschi, D.: Assessing the privacy risk in the process of building call habit models that underlie the sociometer. Technical report. http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2014-TR-011&langver=it&scelta=Metadata

  6. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from mobile calls habits. In: The Proceedings of UrbComp (2012)

    Google Scholar 

  7. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Turism fluxes observatory: deriving mobility indicators from GSM calls habits. In: The Book of Abstracts of NetMob (2013)

    Google Scholar 

  8. Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Analysis of GSM calls data for understanding user mobility behavior. In: The Proceedings of Big Data (2013)

    Google Scholar 

  9. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20, 695–719 (2011)

    CrossRef  Google Scholar 

  10. Nanni, M., Trasarti, R., Furletti, B., Gabrielli, L., Mede, P.V.D., Bruijn, J.D., Romph, E.D., Bruil, G.: MP4-A project: mobility planning for Africa. In: D4D Challenge @ 3rd Conference on the Analysis of Mobile Phone datasets (NetMob 2013)

    Google Scholar 

  11. Oltenau, A.-M., Trasarti, R., Couronne, T., Giannotti, F., Nanni, M., Smoreda, Z., Ziemlicki, C.: GSM data analysis for tourism application. In: Proceedings of 7th International Symposium on Spatial Data Quality (ISSDQ) (2011)

    Google Scholar 

  12. Pereira, F.C., Liu, L., Calabrese, F.: Profiling transport demand for planned special events: prediction of public home distributions (2010). www.scienceDirect.com

  13. Quercia, D., Lathia, N., Calabrese, F., Di Lorenzo, G., Crowcroft, J.: Recommending social events from mobile phone location data. In: International Conference on Data Mining, ICDM (2010)

    Google Scholar 

  14. Schlaich, J., Otterst\(\ddot{a}\)tter, T., Friedrich, M.: Generating trajectories from mobile phone data. In: The Proceedings of the 89th Annual Meeting Compendium of Papers, Transportation Research Board of the National Academies (2010)

    Google Scholar 

  15. Wikipedia. Tourism. http://en.wikipedia.org/wiki/Tourism

  16. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 11. ACM, New York (2011)

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the European Union under the FP7-ICT Program: Project DataSim n. FP7-ICT-270833, and Project Petra n. 609042; and by the MIUR and MISE under the Industria 2015 program: Project MOTUS grating degree n.0000089 - application code MS01_00015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Nanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gabrielli, L., Furletti, B., Giannotti, F., Nanni, M., Rinzivillo, S. (2015). Use of Mobile Phone Data to Estimate Visitors Mobility Flows. In: Canal, C., Idani, A. (eds) Software Engineering and Formal Methods. SEFM 2014. Lecture Notes in Computer Science(), vol 8938. Springer, Cham. https://doi.org/10.1007/978-3-319-15201-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15201-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15200-4

  • Online ISBN: 978-3-319-15201-1

  • eBook Packages: Computer ScienceComputer Science (R0)