Skip to main content

Genetic Considerations in Patients with Aortic Disease

  • Chapter
  • First Online:
Endovascular Aortic Repair
  • 2885 Accesses

Abstract

The development of aortic endovascular repair has been a major advance in the treatment of aortic aneurysms and dissections. The use of endovascular repairs in patients with connective tissue disease has been limited due to concerns for device failure and they have been intentionally excluded from FDA trials. These patients form a subset of a larger group of patients with genetically triggered aortic disease. The aim of this chapter is to summarize the current body of knowledge about the genetics of syndromic (including connective tissue disease) and non-syndromic genetically triggered aortic aneurysms and dissections, diagnosis, current management, and role of endovascular repair in this population. Having a working knowledge of the known mutations leading to aortic aneurysms and dissections will allow the vascular surgeon to identify these patients and will facilitate early diagnosis and treatments tailored to the affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.

    Google Scholar 

  2. Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82(4):1400–5.

    Article  PubMed  Google Scholar 

  3. Tilson MD, Seashore MR. Fifty families with abdominal aortic aneurysms in two or more first-order relatives. Am J Surg. 1984;147(4):551–3.

    Article  CAS  PubMed  Google Scholar 

  4. Kuivaniemi H, Shibamura H, Arthur C, Berguer R, Cole CW, Juvonen T, et al. Familial abdominal aortic aneurysms: collection of 233 multiplex families. J Vasc Surg. 2003;37(2):340–5.

    Article  PubMed  Google Scholar 

  5. Jones JA, Spinale FG, Ikonomidis JS. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc Res. 2009;46(2):119–37.

    Article  CAS  PubMed  Google Scholar 

  6. Judge DP, Dietz HC. Marfan’s syndrome. Lancet. 2005;366(9501):1965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dietz HC, Pyeritz RE, Hall BD, Cadle RG, Hamosh A, Schwartz J, et al. The Marfan syndrome locus: confirmation of assignment to chromosome 15 and identification of tightly linked markers at 15q15-q21.3. Genomics. 1991;9(2):355–61.

    Article  CAS  PubMed  Google Scholar 

  8. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De BJ, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.

    Article  CAS  PubMed  Google Scholar 

  9. Loeys B, Nuytinck L, Delvaux I, De BS, De PA. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Arch Intern Med. 2001;161(20):2447–54.

    Article  CAS  PubMed  Google Scholar 

  10. Loeys B, De BJ, Van AP, Wettinck K, Pals G, Nuytinck L, et al. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum Mutat. 2004;24(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  11. Gott VL, Greene PS, Alejo DE, Cameron DE, Naftel DC, Miller DC, et al. Replacement of the aortic root in patients with Marfan’s syndrome. N Engl J Med. 1999;340(17):1307–13.

    Article  CAS  PubMed  Google Scholar 

  12. Coselli JS, Volguina IV, LeMaire SA, Sundt TM, Connolly HM, Stephens EH, et al. Early and 1-year outcomes of aortic root surgery in patients with Marfan syndrome: a prospective, multicenter, comparative study. J Thorac Cardiovasc Surg. 2014;147(6):1758–66, 1767.

    Article  PubMed  Google Scholar 

  13. Cameron DE, Alejo DE, Patel ND, Nwakanma LU, Weiss ES, Vricella LA, et al. Aortic root replacement in 372 Marfan patients: evolution of operative repair over 30 years. Ann Thorac Surg. 2009;87(5):1344–9.

    Article  PubMed  Google Scholar 

  14. Silverman DI, Burton KJ, Gray J, Bosner MS, Kouchoukos NT, Roman MJ, et al. Life expectancy in the Marfan syndrome. Am J Cardiol. 1995;75(2):157–60.

    Article  CAS  PubMed  Google Scholar 

  15. Gott VL, Cameron DE, Alejo DE, Greene PS, Shake JG, Caparrelli DJ, et al. Aortic root replacement in 271 Marfan patients: a 24-year experience. Ann Thorac Surg. 2002;73(2):438–43.

    Article  PubMed  Google Scholar 

  16. Crawford ES. Marfan’s syndrome. Broad spectral surgical treatment cardiovascular manifestations. Ann Surg. 1983;198(4):487–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niinami H, Aomi S, Tagusari O, Hashimoto A, Koyanagi H. Extensive aortic reconstruction for aortic aneurysms in Marfan syndrome. Ann Thorac Surg. 1999;67(6):1864–7.

    Article  CAS  PubMed  Google Scholar 

  18. Carrel T, Beyeler L, Schnyder A, Zurmuhle P, Berdat P, Schmidli J, et al. Reoperations and late adverse outcome in Marfan patients following cardiovascular surgery. Eur J Cardiothorac Surg. 2004;25(5):671–5.

    Article  PubMed  Google Scholar 

  19. Milewicz DM, Dietz HC, Miller DC. Treatment of aortic disease in patients with Marfan syndrome. Circulation. 2005;111(11):e150–7.

    Article  PubMed  Google Scholar 

  20. Girdauskas E, Kuntze T, Borger MA, Falk V, Mohr FW. Distal aortic reinterventions after root surgery in Marfan patients. Ann Thorac Surg. 2008;86(6):1815–9.

    Article  PubMed  Google Scholar 

  21. Song HK, Kindem M, Bavaria JE, Dietz HC, Milewicz DM, Devereux RB, et al. Long-term implications of emergency versus elective proximal aortic surgery in patients with Marfan syndrome in the Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions Consortium Registry. J Thorac Cardiovasc Surg. 2012;143(2):282–6.

    Article  PubMed  Google Scholar 

  22. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz III HC. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330(19):1335–41.

    Article  CAS  PubMed  Google Scholar 

  24. Pitcher A, Emberson J, Lacro RV, Sleeper LA, Stylianou M, Mahony L, et al. Design and rationale of a prospective, collaborative meta-analysis of all randomized controlled trials of angiotensin receptor antagonists in Marfan syndrome, based on individual patient data: a report from the Marfan Treatment Trialists’ Collaboration. Am Heart J. 2015;169(5):605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014;16(12):881–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pope FM, Narcisi P, Nicholls AC, Germaine D, Pals G, Richards AJ. COL3A1 mutations cause variable clinical phenotypes including acrogeria and vascular rupture. Br J Dermatol. 1996;135(2):163–81.

    Article  CAS  PubMed  Google Scholar 

  27. Pepin MG, Byers PH. Ehlers-Danlos syndrome type IV. 1993.

    Google Scholar 

  28. Leistritz DF, Pepin MG, Schwarze U, Byers PH. COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet Med. 2011;13(8):717–22.

    Article  CAS  PubMed  Google Scholar 

  29. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  30. Shalhub S, Black III JH, Cecchi AC, Xu Z, Griswold BF, Safi HJ, et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial involvement and outcomes. J Vasc Surg. 2014;60(1):160–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Beighton P, De PA, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet. 1998;77(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ong KT, Perdu J, De BJ, Bozec E, Collignon P, Emmerich J, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers-Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet. 2010;376(9751):1476–84.

    Article  CAS  PubMed  Google Scholar 

  33. Brooke BS. Celiprolol therapy for vascular Ehlers-Danlos syndrome. Lancet. 2010;376(9751):1443–4.

    Article  PubMed  Google Scholar 

  34. Oderich GS, Panneton JM, Bower TC, Lindor NM, Cherry KJ, Noel AA, et al. The spectrum, management and clinical outcome of Ehlers-Danlos syndrome type IV: a 30-year experience. J Vasc Surg. 2005;42(1):98–106.

    Article  PubMed  Google Scholar 

  35. Lum YW, Brooke BS, Arnaoutakis GJ, Williams TK, Black III JH. Endovascular procedures in patients with Ehlers-Danlos syndrome: a review of clinical outcomes and iatrogenic complications. Ann Vasc Surg. 2012;26(1):25–33.

    Article  PubMed  Google Scholar 

  36. Bergqvist D, Bjorck M, Wanhainen A. Treatment of vascular Ehlers-Danlos syndrome: a systematic review. Ann Surg. 2013;258(2):257–61.

    Article  PubMed  Google Scholar 

  37. Brooke BS, Arnaoutakis G, McDonnell NB, Black III JH. Contemporary management of vascular complications associated with Ehlers-Danlos syndrome. J Vasc Surg. 2010;51(1):131–8.

    Article  PubMed  Google Scholar 

  38. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788–98.

    Article  CAS  PubMed  Google Scholar 

  39. Williams JA, Loeys BL, Nwakanma LU, Dietz HC, Spevak PJ, Patel ND, et al. Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease. Ann Thorac Surg. 2007;83(2):S757–63.

    Article  PubMed  Google Scholar 

  40. Williams JA, Hanna JM, Shah AA, Andersen ND, McDonald MT, Jiang YH, et al. Adult surgical experience with Loeys-Dietz syndrome. Ann Thorac Surg. 2015;99(4):1275–81.

    Article  PubMed  Google Scholar 

  41. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–6.

    Article  PubMed  Google Scholar 

  42. Regalado ES, Guo DC, Villamizar C, Avidan N, Gilchrist D, McGillivray B, et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res. 2011;109(6):680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wessels MW, Catsman-Berrevoets CE, Mancini GM, Breuning MH, Hoogeboom JJ, Stroink H, et al. Three new families with arterial tortuosity syndrome. Am J Med Genet A. 2004;131(2):134–43.

    Article  PubMed  Google Scholar 

  44. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De BJ, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38(4):452–7.

    Article  CAS  PubMed  Google Scholar 

  45. Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De BJ, Devriendt K, Albrecht B, et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat. 2008;29(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  46. Pannu H, Avidan N, Tran-Fadulu V, Milewicz DM. Genetic basis of thoracic aortic aneurysms and dissections: potential relevance to abdominal aortic aneurysms. Ann N Y Acad Sci. 2006;1085:242–55.

    Article  CAS  PubMed  Google Scholar 

  47. Inamoto S, Kwartler CS, Lafont AL, Liang YY, Fadulu VT, Duraisamy S, et al. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res. 2010;88(3):520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boileau C, Guo DC, Hanna N, Regalado ES, Detaint D, Gong L, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet. 2012;44(8):916–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tran-Fadulu V, Pannu H, Kim DH, Vick III GW, Lonsford CM, Lafont AL, et al. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet. 2009;46(9):607–13.

    Article  CAS  PubMed  Google Scholar 

  50. Regalado E, Medrek S, Tran-Fadulu V, Guo DC, Pannu H, Golabbakhsh H, et al. Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms. Am J Med Genet A. 2011;155A(9):2125–30.

    Article  PubMed  Google Scholar 

  51. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Regalado ES, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet. 2015;8(3):457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milewicz DM, Ostergaard JR, Ala-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A. 2010;152A(10):2437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39(12):1488–93.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu L, Vranckx R, Van Khau KP, Lalande A, Boisset N, Mathieu F, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006;38(3):343–9.

    Article  CAS  PubMed  Google Scholar 

  56. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007;16(20):2453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87(5):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo DC, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ, et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet. 2013;93(2):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van de Luijtgaarden KM, Bastos GF, Hoeks SE, Valentijn TM, Stolker RJ, Majoor-Krakauer D, et al. Lower atherosclerotic burden in familial abdominal aortic aneurysm. J Vasc Surg. 2014;59(3):589–93.

    Article  PubMed  Google Scholar 

  60. Brown CR, Greenberg RK, Wong S, Eagleton M, Mastracci T, Hernandez AV, et al. Family history of aortic disease predicts disease patterns and progression and is a significant influence on management strategies for patients and their relatives. J Vasc Surg. 2013;58(3):573–81.

    Article  PubMed  Google Scholar 

  61. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.

    Article  PubMed  Google Scholar 

  62. Ince H, Rehders TC, Petzsch M, Kische S, Nienaber CA. Stent-grafts in patients with Marfan syndrome. J Endovasc Ther. 2005;12(1):82–8.

    Article  PubMed  Google Scholar 

  63. Nordon IM, Hinchliffe RJ, Holt PJ, Morgan R, Jahangiri M, Loftus IM, et al. Endovascular management of chronic aortic dissection in patients with Marfan syndrome. J Vasc Surg. 2009;50(5):987–91.

    Article  PubMed  Google Scholar 

  64. Geisbusch P, Kotelis D, von Tengg-Kobligk H, Hyhlik-Durr A, Allenberg JR, Bockler D. Thoracic aortic endografting in patients with connective tissue diseases. J Endovasc Ther. 2008;15(2):144–9.

    Article  PubMed  Google Scholar 

  65. Botta L, Russo V, La PC, Rosati M, Di BR, Fattori R. Stent graft repair of descending aortic dissection in patients with Marfan syndrome: an effective alternative to open reoperation? J Thorac Cardiovasc Surg. 2009;138(5):1108–14.

    Article  PubMed  Google Scholar 

  66. Waterman AL, Feezor RJ, Lee WA, Hess PJ, Beaver TM, Martin TD, et al. Endovascular treatment of acute and chronic aortic pathology in patients with Marfan syndrome. J Vasc Surg. 2012;55(5):1234–40.

    Article  PubMed  Google Scholar 

  67. Marcheix B, Rousseau H, Bongard V, Heijmen RH, Nienaber CA, Ehrlich M, et al. Stent grafting of dissected descending aorta in patients with Marfan’s syndrome: mid-term results. JACC Cardiovasc Interv. 2008;1(6):673–80.

    Article  PubMed  Google Scholar 

  68. Eid-Lidt G, Gaspar J, Melendez-Ramirez G, Cervantes SJ, Gonzalez-Pacheco H, Damas de Los Santos F, et al. Endovascular treatment of type B dissection in patients with Marfan syndrome: mid-term outcomes and aortic remodeling. Catheter Cardiovasc Interv. 2013;82(7):E898–905.

    Article  PubMed  Google Scholar 

  69. Dong ZH, Fu WG, Wang YQ, Guo DQ, Xu X, Ji Y, et al. Retrograde type A aortic dissection after endovascular stent graft placement for treatment of type B dissection. Circulation. 2009;119(5):735–41.

    Article  PubMed  Google Scholar 

  70. Cikrit DF, Miles JH, Silver D. Spontaneous arterial perforation: the Ehlers-Danlos specter. J Vasc Surg. 1987;5(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  71. Kitagawa A, Greenberg RK, Eagleton MJ, Mastracci TM, Roselli EE. Fenestrated and branched endovascular aortic repair for chronic type B aortic dissection with thoracoabdominal aneurysms. J Vasc Surg. 2013;58(3):625–34.

    Article  PubMed  Google Scholar 

  72. van de Luijtgaarden KM, Bastos GF, Hoeks SE, Majoor-Krakauer D, Rouwet EV, Stolker RJ, et al. Familial abdominal aortic aneurysm is associated with more complications after endovascular aneurysm repair. J Vasc Surg. 2014;59(2):275–82.

    Article  PubMed  Google Scholar 

  73. Ryer EJ, Garvin RP, Thomas B, Kuivaniemi H, Franklin DP, Elmore JR. Patients with familial abdominal aortic aneurysms are at increased risk for endoleak and secondary intervention following elective endovascular aneurysm repair. J Vasc Surg. 2015;62(5):1119–24.e9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherene Shalhub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Mayo Foundation for Medical Education and Research

About this chapter

Cite this chapter

Shalhub, S. (2017). Genetic Considerations in Patients with Aortic Disease. In: Oderich, G. (eds) Endovascular Aortic Repair. Springer, Cham. https://doi.org/10.1007/978-3-319-15192-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15192-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15191-5

  • Online ISBN: 978-3-319-15192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics