Skip to main content

Moisture Separation

  • Chapter
  • 2971 Accesses

Abstract

Chapter 9 is devoted to the basics of designing of moisture separation. First the importance of knowing the characteristic spectra of the moisture is underlined for proper analysis. Then some simple methods for computation of the efficiency of the separation are given for cyclone type and vane type. Different ideas based on different complexity are presented for description of the velocity field: the Kreith and Sonju solution for the decay of turbulent swirl in pipes; the potential gas flow in vanes; description of the trajectory of particles in a known continuum field; the computational fluid dynamics (CFD) analyses of cyclones; the CFD analyses of vane separators. Then several experiments are collected from the literature for boiling-water reactor cyclones, pressurized-water reactor steam generator cyclones, other cyclone types, and vane dryers. In several cases the success of different methods is demonstrated by comparisons with data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelberg, M.: Mean drop-size resulting from the onjection of a liquid jet into a high-speed gas stream. AIAA-Journal 6, 1143–1147 (1986)

    Article  Google Scholar 

  • Alekseenko, S.V., Nakoryakov, V.E., Pokusaev, B.G.: Wave flow of liquid films. Begell House, New York (1996)

    Google Scholar 

  • Alexandrovich, S.V., Truchniy, A.D.: Basic directions of the modernization and perform-ance increase of the thermal and mechanical equipment of the secondary side of the power units of NPPs, Moscow (2010) (in Russian)

    Google Scholar 

  • Algifri, A.H., Bhardwaj, R.K.: Prediction of the heat transfer for decaying turbulent swirl flow in a tube. Int. J. Heat Mass Transfer 28(9), 1637–1643 (1985)

    Article  MATH  Google Scholar 

  • Bruckmann, W., Kienböck, M.: Moisture separator reheater. VGB Kraftwerkstechnik 04, 271–281 (1984)

    Google Scholar 

  • Bürkholz, A.: Droplet separation, VCH Verlagsgeselschaft mbH (1989)

    Google Scholar 

  • Burkov, B.K., Gostev, D.G., Hrunic, A.H., Belousov, V.D., Govorov, A.S.: Rasrabotka Iizsledovanie konstrukcij separatorov vlajnogo para. Teploenergetica (9), 57–59 (1999)

    Google Scholar 

  • Carson, W.R., Williams, H.K.: Method of reducing carryover and reducing pressure drop through a steam separator, EPRI Report NP-1607 (1980)

    Google Scholar 

  • Chaki, M., Murase, M.: Evaluation of the sensitivity of a two-phase flow model for steam separator analysis. In: 14th International Conference on Nuclear Engineering, Miami, FL, ICONE 14-89507, July 17-20 (2006)

    Google Scholar 

  • Chen, H.-P., Lin, Z.-J., Liu, D.-C., Wang, X.S., Rhodes, M.J.: A down-exhaust cyclone separator. Ind. Eng. Chem. Res. 38, 1605–1610 (1999)

    Article  Google Scholar 

  • Crowe, C.T., Pratt, D.T.: Analysis of the flow field in cyclone separators. Comput. Fluids 2, 249–260 (1974)

    Article  MATH  Google Scholar 

  • Dibelius, G., Dörr, A., Ederhof, A., et al.: Erfahrungen mit der Bestimmung der Dampffeuchte bei den Abnahmeversuchen im Kernkraftwerk Biblis. VGB Kraftwerkstechnik 57(9), 610–619 (1977)

    Google Scholar 

  • Detsch, M.E., Philiphoff, G.A.: Gasodinamika dwihfasnyh sred, Moscow, Energoisdat (1981) (in Russian)

    Google Scholar 

  • Fadda, D., Taylor, D., Greis, I., Kornfeldt, H., Sjövall, H.: Nuclear steam dryers optimized by computational and experimental fluid dynamics. In: 12th International Conference on Nuclear Engineering, Proceedings of ICONE 2012, ICONE12-49457, Arlington, VA, April 25-29 (2012)

    Google Scholar 

  • Fujita, I., Machii, K., Sakata, T.: Development of high performance moisture separtor re-heater. In: Proceedings of the ASME 2009 Power Conference POWER 2009, POWER2009-81092, Albu-querque, NM, July 21-23 (2009)

    Google Scholar 

  • Galletti, C., Brunazzi, E., Tognotti, L.: A numerical model for gas flow and droplet motion in wave-plate mist eliminators with drainage channels. Chem. Eng. Sci. 63, 5639–5652 (2008)

    Article  Google Scholar 

  • Gardner, G.C.: Separators of liquids from gases and vapors, HTFS Design Report 46, AERE R 9817 (1977)

    Google Scholar 

  • Gloger, M.: Probleme der Wassrabscheidung in Naßdampfturbinen, Brenstoff-Wärme-Kraft, Bd 22 Nr 9, pp. 417–460 (1970)

    Google Scholar 

  • Glustenko, N.N., et al.: Izsledovanie jeljusijnogo separatora. Energomashinostroenie (5), 37–38 (1972)

    Google Scholar 

  • Govan, A.H., Hewitt, G.F., Owen, D.G., Bott, T.R.: An improved CHF modelling code. In: 2nd UK National Heat Transfer Conference, Glasgow (1988)

    Google Scholar 

  • Hewitt, G.F., Govan, A.H.: Phenomenological modeling of non-equilibrium flows with phase change. In: Proceedings of 7th Eurotherm Seminar Thermal Non- Equilibrium in Two-Phase Flow (1989)

    Google Scholar 

  • Idelchik, I.E.: Handbook of hydraulic resistance, 3rd edn., Mumbai, Jaico (2003)

    Google Scholar 

  • Ikeda, H., et al.: Improvement of BWR steam separator with three-dimensional gas-liquid two-phase flow simulation method. In: 11th International Conference on Nuclear Engineering, ICONE 2011-36486, Tokyo, Japan, April 20-23 (2003)

    Google Scholar 

  • Kall, H.: Entwicklung eines Tröpfchenabscheiders zur Dampftrocknung in Kernkraftwerken. Reihe 3(51) (May 1979)

    Google Scholar 

  • Kim, J.-I., Kim, M.-Y., Bae, H.-S., Lee, B.-E.: The performance of moisture separation sys-tem of a steam generator using computational fluid dynamics. In: Proceedings of ICAP, Paper 5048, Seoul, Korea, May 15-19 (2005)

    Google Scholar 

  • Kolev, N.I.: Controlling the moisture content in the steam by using nozzles in BWRS. In: 11th International Conference on Nuclear Engineering, ICONE 11, Keio Plaza Inter-Continental, Shinjuku, Tokyo, Japan, April 20-23, ICONE11-36306; ETPFG, European Two-Phase Flow Group Meeting, Norway; 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10) Seoul, Korea, October 5-9 (2003)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 2. Springer, Heidelberg (2007)

    Google Scholar 

  • Kolev, N.I., Heller, M., Wedekind, S. (Anmeldetag: 22.01.2008) Zentrifugalabscheider, Patent DE 10 2008 005 574 A1 2009.07.30

    Google Scholar 

  • Koopman, H.: Analytical approximation of vane separator efficiencies. In: 48th European Two-Phase Flow Group Meeting, June 28-30, Brunel University, London (2010)

    Google Scholar 

  • Kreith, F., Sonju, O.K.: The decay of turbulent swirl in pipe. J. Fluid Mech. 2(2), 257–271 (1965)

    Article  Google Scholar 

  • KWU, KKB-Zusammenstellung der Ergebnisse der Abscheider- Trockner- Test in Dampf-Wasser-Versuchstand, Großwelzheim (1973)

    Google Scholar 

  • KWU, Verteilung des Tropfenmassenstroms über den Tropfendurchmesser am Austritt aus der HD-Turbine, Technischer Bericht Nr 74035, KWU Mühlheim (1974)

    Google Scholar 

  • Li, J., Huang, S., Wang, X.: Numerical study of steam-water separator with wave-type vanes. Chin. J. Chem. Eng. 15(4), 492–498 (2007)

    Article  Google Scholar 

  • Leber, A.: Transport und Abscheidung von Tropfen im Primärkreis des Hochtemperaturreaktors bei Wassereinbruchstörfällen, Jül 4050, D82 (Diss., Aachen, RWTH (2003)

    Google Scholar 

  • Loeb, G., Taylor, D., Yarden, A.L.: Alcommonwealth Edison upgrading moisture separa-tors in four older NPP units – Gaining 11 MWe in each of the first two (2002), http://www.babcockpower.com/pdf/tei-12.pdf

  • Manson, S.J., Canaan, R.E., Klein, D.E.: The development and benchmarking of an analyti-cal moisture separation model for BWRs. ASME/JSME Nucl. Eng. Conf. 1, 47–53 (1993)

    Google Scholar 

  • Mertkaya, B., Koopman, H.-K., Kolev, N., Meister, M. (01.11, Wet Separator, PCT/EP2012/057376. Int. Anmeldung (April 23, 2012)

    Google Scholar 

  • Nahstoll, J.: Tropfengrößenverteilungen bei der Einspritzung von Flüssigkeitsstrahlen in Gasströmungen, BWK Bd. 40 Nr. 10 Oktober (1988)

    Google Scholar 

  • Nakao, T., Nagase, M., Aoyama, G., Murase, M.: Development of simplified wave-type vane in BWR steam dryer and assessment of vane droplet removal. J. Nucl. Sci. Technol. 36(5), 424–432 (1999)

    Article  Google Scholar 

  • Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes. Zeitschrift VDI 60, 541–546 (1916)

    Google Scholar 

  • Owen, G.D., Hewitt, G.F.: An improved annular two-phase flow model. In: 3rd BHRA Lut Conf. in Multiphase Flow, The Hague (1987)

    Google Scholar 

  • Patentschrift, no 23 36 447 des Deutschen Patentamtes (February 2, 1976)

    Google Scholar 

  • Philiphoff, G.A., Povarov, O.A.: Separazii vlagi v turbinah AES, Moscow, Energija (1980)

    Google Scholar 

  • Phillips, H., Deakin, A.W.: Measurements of the collection efficiency of various demister devices. In: Proc. 4th Annular Meeting of Aerosol Society, Loughborough, UK, pp. 169–174 (1990)

    Google Scholar 

  • Povarov, O.A., Vasil’chenko, E.G., Randin, V.H.: Izvestija Vyshich Uchebnych Zaveenij. Energetika 10, 73–78 (1976)

    Google Scholar 

  • Powersep: Mehr Leistung durch zusätzlichen Vorabscheider Powersep auf der Sekundeärseite. Adv. Nucl. Power (3) (February 2002)

    Google Scholar 

  • Regehr, U.: Mechanische Reinigung heterogener Gassysteme mit einem neuartigen Tröpfchenabscheider, Chemie-Ing-Technik, Bd 39, Heft 19 (1967)

    Google Scholar 

  • Reyes-Gutiérrez, M.A., Rojas-Solórzano, L.R., Marín-Moreno, J.C.: Eulerian-eulerian modeling of disperse two-phase flow in a gas-liquid cylindrical cyclone. J. Fluids Eng. 128(4), 832 (2006)

    Article  Google Scholar 

  • Ryjkov, S.B., Ershov, V.V., Albantov, A.K.: Issledovanija teplo- i masootdaci pri dvijenii dispersnoj gazojidkostnoj smesi v krivolinejnom separirujustem kanale. Teploener-getika 9, 79–83 (1974)

    Google Scholar 

  • Senoo, Y., Nagata, T.: Swirl flow in long pipes with different roughness. 15(90), 1514–1521 (1972)

    Google Scholar 

  • Schadel, S.A., Leman, G.W., Binder, J.L., Hanratty, T.J.: Rates of atomization and deposi-tion in vertical annular flow. Int. J. Multiphase Flow 16(3), 363–374 (1990)

    Article  MATH  Google Scholar 

  • Schlichting, H.: Grenzschicht Theorie, Verlag G. Braun, Karlsruhe (1982)

    Google Scholar 

  • Smith, R.V., Azzopardi, B.J.: Summary of reported droplet size distribution data in dis-persed two-phase flow. NUREG/CR-0476 (October 1978)

    Google Scholar 

  • Yul, S., Popchenkov, I.N., Burkat, V.S.: Determining the optimum cross-section of a ve-netian-blind separator. Translated from Khimicheskoe I Neftenoe Machinostroenie 12, 1–3 (1966)

    Google Scholar 

  • Sawatzki, O.: Drallströmung in langen kreisrunden Rohren, Mitteilungen des Institutes für Strömungslehere, Band 12, pp. 1-33 (1972)

    Google Scholar 

  • Steenberger, W.: Turbulent flow in a pipe with swirl, PhD thesis, Eindhoven University of Technology (1995)

    Google Scholar 

  • Stewart, A.C., Chamberiain, N.P., Irshad, M.: A new approach to gas-liquid separa-tion. European Petroleum Conference, SPE 50685 (1998)

    Google Scholar 

  • Taitel, Y., Barnea, D., Dukler, A.E.: Modeling flow pattern transition in vertical tubes. AIChEJ 22(3), 345 (1980)

    Article  Google Scholar 

  • Trojanovski, B.M.: Turbiny dlja atomnyh elektrostancii, Moskva, Energia (1978) (in Russian)

    Google Scholar 

  • Ueda, T.: Study on entrainment rate and droplet size in annular two-phase flow. Bull JSME 45, 127–138 (1979)

    Article  Google Scholar 

  • Ushiki, K., Nashizawa, E., Beniko, E., Linoya, K.: Performance of a droplet separator with multistage rows of flat blades. J. Chem. Eng. Japan 15, 292–298 (1982)

    Article  Google Scholar 

  • Verlaan, C.: Performance of novel mist eliminators, PhD thesis, Delft University (1991)

    Google Scholar 

  • Wolf, R.H., Moen, R.H.: Advances in steam-water separators for BWRs. ASME 73-WA/Pwr-4 (1973)

    Google Scholar 

  • Xiamoto, W., Suyi, H., Jia, L.: The research on the steam-water separator with corrugated plates. In: 3rd International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, September 22-24 (2004)

    Google Scholar 

  • Yoneda, K., Inada, F., Yasuo, A.: Investigation of flow characteristics in gas-liquid separa-tor air-water two-phase flow experiment. In: 11th International Conference on Nuclear Engineering, ICONE, Tokyo, Japan, April 20-23, pp. 11–36300 (2003)

    Google Scholar 

  • Zaichik, L.I.: Estimation of time between particle collisions in turbulent flow. High Temp. 36(3) (1998) (translation from Russian)

    Google Scholar 

  • Zubov, V.P.: Study of pressure losses in wyes during the separation and merging of flows, thesis, Moscow (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Ivanov Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolev, N.I. (2015). Moisture Separation. In: Multiphase Flow Dynamics 5. Springer, Cham. https://doi.org/10.1007/978-3-319-15156-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15156-4_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15155-7

  • Online ISBN: 978-3-319-15156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics