Skip to main content

Critical Multiphase Flow

  • Chapter
  • 2935 Accesses

Abstract

Chapter 7 is devoted to the critical multiphase flow. It starts with the mathematical definition of the criticality condition, with the appropriate design of a numerical grid structure and numerical iteration strategy. Then the methods used in the modern design are presented starting from the simple models and increasing gradually the complexity. First the single phase critical flow in pipe is considered for the case with no friction energy dissipation and constant cross section. Then the general case is presented for perfect gas. Then the same ideas are extended to simple two phase cases for pipes and nozzles: subcooled critical mass flow rate in short pipes, orifices and nozzles; frozen homogeneous non-developed flow; nonhomogeneous developed flow without mass exchange; equilibrium homogeneous flow; equilibrium non-homogeneous flow; inhomogeneous developing flow in short pipes and nuzzles with infinitely fast heat exchange and with limited interfacial mass transfer. Then the modern state of the knowledge for describing critical flow is presented by considering physical details like: bubbles origination; bubble fragmentation; bubble coalescences; droplets origination. Examples follow for application of the theory of the critical flow in real scale analysis: blow down of a closed pipe and blow down of a vessel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuaf, N., Wu, B.J.C., Zimmer, G.A., Saha, P.: A study of non equilibrium flashing of water in a converging diverging nozzle. Experimental, Modeling, NUREG/CR-1864, BNL-NUREG-51317 1, 2 (June 1981)

    Google Scholar 

  • Albring, W.: Angewandte Strömungslehre. Verlag Theodor Steinkopf, Dresden (1970)

    Google Scholar 

  • Algamir, M., Lienhard, J.H.: Correlation of pressure undershoot during hot-water depressurisation. J. Heat Transfer 103(1), 60 (1981)

    Google Scholar 

  • Aounallah, Y., Hofer, K.: Level swell prediction with RETRAN-3D and application to a BWR steam line break analysis. In: Proc. of ICAP 2003, Córdoba, Spain, Paper 3362, May 4-7 (2003)

    Google Scholar 

  • Arefeva, E.I., Aladev, I.T.: O wlijanii smatchivaemosti na teploobmen pri kipenii. Injenerno – Fizitcheskij Journal 1(7), 11–17 (1958) (in Russian)

    Google Scholar 

  • Arnsberg: Obsor critizeskich rashodomerof dlja izmerenija gazovyh potokov. Teoreticeskie osnovy ingenergyh raszotov 39(4) (1962) (in Russian)

    Google Scholar 

  • Aumiller, D.L., Tomlinson, E.T., Clarke, W.G.: A new assessment of Relap5-3D using a General Electric level small problem, Relap5 User Seminar, Jackson Hole, Wyoming, September 12-14 (2000)

    Google Scholar 

  • Basu, N., Warrier, G.R., Dhir, V.K.: Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J. Heat Transfer 124, 717–728 (2002)

    Article  Google Scholar 

  • Benedict, R.P., Carlucci, N.A., Swetz, S.D.: Flow losses in abrupt enlargements and contractions. Trans. ASME J. Engineering Power 88, 73–81 (1966)

    Article  Google Scholar 

  • Benjamin, R.J., Balakrishnan, A.R.: Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp. Thermal Fluid Sci. 15, 32–42 (1997)

    Article  Google Scholar 

  • Benjamin, R.J., Balakrishnan, A.R.: Nucleate pool boiling heat transfer of binary mixtures at low to moderate heat fluxes. Trans. ASME, Journal of Heat Transfer 121, 365–375 (1999)

    Article  Google Scholar 

  • Bergles, A.E., Rohsenow, W.M.: The determination of forced convection surface-boiling heat transfer. ASME J. Heat Transfer 1, 365–372 (1964)

    Article  Google Scholar 

  • Brosche, D.: Berechnung kompressibler, reibungsbehafteter Rohrstroemungen mit Hilfe eines digitalen Rechenprogram. Brenst.-Waerme-Kraft 25(8), 312–316 (1973)

    Google Scholar 

  • Burnell, J.G.: Flow of boiling water through nozzles, orifices and pipes. Engineering, 572–576 (1947)

    Google Scholar 

  • Delhaye, J.M., Giot, M.: Rietmüller: Thermodynamics of Two Phase Flow Systems for Industrial Design and Nuclear Engineering. Hemisphere Publ. Corp. McGraw-Hill Book Company (1981)

    Google Scholar 

  • Edwards, A.R., O’Brien, T.P.: Studies of phenomena connected with the depressurization of water reactors. J. Br. Nucl. Soc. 9(1-4), 125–135 (1970)

    Google Scholar 

  • Faletti, D.W.: Two-phase critical flow of steam/water mixtures, Dissertation. University of Washington (1959)

    Google Scholar 

  • Fauske, H.: Contribution to the theory of two-phase, one component critical flow, ANI-6633, U. S. A.E.C. Research and Development Report, TID-4500, 18th edn (October 1962)

    Google Scholar 

  • Fincke, J.R.: Critical flashing flow of subcooled fluids in nozzles with contour discontinuities, Basic Aspects of Two Phase Flow and Heat Transfer. In: 22nd Nat. Heat Transfer Conference and Exhibition, Niagara Falls, New York, HTD, August 5-8, vol. 34, pp. 85–93 (1984)

    Google Scholar 

  • Freeman, J.R.: The discharge of water through fire nose and nozzles. Trans. ASCE 2, 303 (1888)

    Google Scholar 

  • Frössel, W.: Strömung in glatten, geraden Rohren mit Über- und unterschalgeschwindigkeit. Forsch 7(2), 75–84 (1936)

    Google Scholar 

  • Gaertner, R.F., Westwater, J.W.: Population of active sites in nucleate boiling heat transfer. Chem. Eng. Progr. Symp. Ser. 30(30), 39–48 (1960)

    Google Scholar 

  • Gaertner, R.F.: Photographic study of nucleate pool boiling on a horizontal surface, transaction of the ASME. J. Heat Transfer 87, 17–29 (1965)

    Article  Google Scholar 

  • Griffith, P., Wallis, G.B.: The role of the surface conditions in nucleate boiling. Chem. Eng. Prog. Symp. 56, 49–63 (1960)

    Google Scholar 

  • Grolmes, M., Sharon, A., Kim, C.S., Pauls, R.E.: Level swell analysis of the Marviken test T-11. Nucl. Eng. Des. 93, 229–239 (1986)

    Google Scholar 

  • Han, C.Y., Griffith, P.: The mechanism of heat transfer in nucleate pool boiling, Part I, Bubble initiation, growth and departure. Int. J. Heat Mass Transfer 8, 887–904 (1965)

    Article  MATH  Google Scholar 

  • Hassan, Y.A.: TRAC-PF1/MOD1 prediction of the level swell data. In: ANS Proceedings, 1985 National Heat Transfer Conference, Denver, Colorado, August 4-7 (1985)

    Google Scholar 

  • Henry, R.E., Fauske, H.K.: The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes. J. Heat Transfer 2, 47–56 (1969)

    Google Scholar 

  • Henry, R.E., Fauske, H.K., McComas, S.T.: Two-phase critical flow at low qualities Part I: Experimental. Nucl. Sci. Eng. 41, 79–91 (1970a)

    Google Scholar 

  • Henry, R.E., Fauske, H.K., McComas, S.T.: Two-phase critical flow at low qualities Part II: Analysis. Nucl. Sci. Eng. 41, 92–98 (1970b)

    Google Scholar 

  • Henry, R.E.: The two-phase critical discharge of initially saturated or subcooled liquid. Nucl. Sci. Eng. 41, 336–342 (1970)

    Google Scholar 

  • Hirose, Y., Hayashi, T., Hazuku, T., Takamasa, T.: Experimental study on contact angle of water droplet in high temperature conditions. In: Proc. of ICONE 14, International Conference on Nucl. Engineering, Miami, Florida, USA, July 17-20 (2006)

    Google Scholar 

  • Isbin, H.S., Moy, J.E., Da Cruz, A.J.R.: Two-phase steam/water critical flow. A. I. Ch. E. J. 3(3), 361 (1957)

    Article  Google Scholar 

  • Ishii, M., Zuber, N.: Relative motion and interfacial drag coefficient in dispersed two-phase flow of bubbles, drops and particles, Paper 56 a. In: AIChE 71st Ann, Meet, Miami (1978)

    Google Scholar 

  • Jones Jr., O.C.: Towards a unified approach for thermal non-equilibrium in gas – liquid systems. Nucl. Eng. Des. 69, 57–73 (1982)

    Article  Google Scholar 

  • Kestin, J.: Ein Beitrag zu Stodolas Kegelgesetz, Wärme- und Stoffübertragung, 16, 53-55 (1982)

    Google Scholar 

  • Kevchishvili, N.A., Dementev, B.S.: Investigation of the influence of the decay heat on the blow down characteristics of steam-water mixtures. Teploenergetika 7, 67 (1985)

    Google Scholar 

  • Kolev, N.I.: Transiente Zweiphasenströmung. Springer, Berlin (1986)

    Google Scholar 

  • Kolev, N.I.: The influence of mutual bubble interaction on the bubble departure diameter. Exp. Therm. Fluid Sci. 8, 167–174 (1994)

    Article  Google Scholar 

  • Kolev, N.I.: Uniqueness of the elementary physics driving heterogeneous nucleate boiling and flashing. Nucl. Eng. Technol. 38(1), 33–42 (2006)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, vol. 1. Springer, Berlin (2007a)

    Google Scholar 

  • Koumoutsos, N., Moissis, R., Spyridonos, A.: A study of bubble departure in forced convection boiling. J. Heat Transfer Trans. ASME 90, 223–230 (1968)

    Article  Google Scholar 

  • Kostyuka, A.G., Frolov, V.V. (eds.): Turbiny teplovyh i atomnyh elektricheskih stanciy, Idatelsvo MEI, Moskva (2001)

    Google Scholar 

  • Kurihara, H.M., Myers, J.E.: The effect of superheat and surface roughness on boiling coefficients. AIChE J 6(1), 83–91 (1960)

    Article  Google Scholar 

  • Labuntsov, D.A.: Approximate theory of heat transfer by developed nucleate boiling (Russ.). Izvestiya AN SSSR, Energetika i transport (1) (1963)

    Google Scholar 

  • Labuntsov, D.A., Kol’chugin, V.A., Golovin, V.S., et al.: Investigation by slow motion of buble growth Teplofiz. Vys. Temp. 3, 446–453 (1964)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. In: Fluid Mechanics, 2nd edn., Pergamon, Oxford, vol. 6 (1987)

    Google Scholar 

  • Mikic, B.B., Rohsenhow, W.M., Griffith, P.: On bubble growth rates. Int. J. Heat Mass Transfer 13, 657–666 (1970)

    Article  Google Scholar 

  • Moody, F.J.: Maximum flow rate of a single component, two-phase mixture. J. Heat Transfer 86, 134–142 (1965)

    Article  Google Scholar 

  • Moody, F.J.: Maximum two-phase vessel blow down from pipes. J. Heat Transfer 88, 285–293 (1966)

    Article  Google Scholar 

  • Moody, F.J.: A pressure pulse model for two-phase critical flow and sonic velocity. J. Heat Transfer 91, 371–384 (1969)

    Article  Google Scholar 

  • Moody, F.J.: Maximum discharge rate of liquid-vapor mixtures from vessels. Nonequilibrium Two-Phase Flows, 27–36 (1975)

    Google Scholar 

  • Moy, J.E.: Critical discharges of steam/water mixtures, MS thesis, University of Minnesota (1955)

    Google Scholar 

  • Oswatitsch, K.: Gasdynamik. Springer, Vienna (1952)

    Google Scholar 

  • Perri Jr., J.A.: Critical flow through sharp-edged orifices. Trans. ASME 71, 757 (1949)

    Google Scholar 

  • Roll, J.B., Mayers, J.C.: The effect of surface tension on factors in boiling heat transfer. A.I.Ch.E. J., 330–344 (1964)

    Google Scholar 

  • Salet, D.W.: Thermal hydraulic of valves for nuclear applications. Nucl. Eng. Des. 88, 220–244 (1984)

    Google Scholar 

  • Semeria, R.F.: Quelques résultats sur le mécanisme de l’ébullition. J. de l’Hydraulique de la Soc. Hydrotechnique de France 7 (1962)

    Google Scholar 

  • Shapiro, A.H.: The dynamics and thermodynamics of compressible fluid flow. The Ronald Press Company, New York (1953)

    Google Scholar 

  • Siegel, R., Keshock, E.G.: Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water. AIChE J. 10(4), 509–551 (1964)

    Article  Google Scholar 

  • Sozzi, G.L., Sutherland, W.A.: Critical flow of saturated and subcooled water at high pressure. General Electric, San Jose (July 1975)

    Google Scholar 

  • Stodola, A.: Dampf- und Gasturbinen. Aufl., vol. 5. Springer, Berlin (1922)

    Google Scholar 

  • Tangren, R.F., Dodge, C.H., Seifert, H.S.: Compressibility effects in two-phase flow. J. Appl. Phys. 20(7), 645–673 (1949)

    Article  Google Scholar 

  • Tolubinsky, V.I., Ostrovsky, J.N.: On the mechanism of boiling heat transfer (vapour bubbles growth rate in the process of boiling in liquids, solutions, and binary mixtures). Int. J. Heat Mass Transfer 9, 1463–1470 (1966)

    Article  Google Scholar 

  • Umminger, K., et al.: Discharge experiments in the PKL test facility, AREVA proprietary (2007)

    Google Scholar 

  • van Stralen, S.J.D., Sluyter, W.M., Sohal, M.S.: Bubble growth rates in nucleate boiling of water at subatmospheric pressures. Int. J. Heat Mass Transfer 18, 655–669 (1975)

    Article  Google Scholar 

  • Wang, C.H., Dhir, V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. ASME J. Heat Transfer 115, 659–669 (1993)

    Article  Google Scholar 

  • Weisbach, J.: Mechanics of Engineering, translated by J. Coxe. Van Nostrand Book Company, New York (1872)

    Google Scholar 

  • Wien, M.: Numerische Simulation von kritischen und nahkritischen Zweiphasenströmungen mit thermischen and fluiddynamischen Nichtgleichgewichtseffekten, PhD Dissertation, Technischen Universität Dresden (2002)

    Google Scholar 

  • Zaloudek, F.R.: The low pressure critical discharge of steam/water mixtures from pipes, HW-68934 Rev (March 1961)

    Google Scholar 

  • Ziklauri, G.B., Danilin, V.S., Seleznev, L.I.: Adiabatnye dvichfasnye tecenija, Atomisdat, Moskva (1975) (in Russian)

    Google Scholar 

  • Zuber, N.: Nucleate boiling: The region of isolated bubbles and the similarity with natural convection. Int. J. Heat Mass Transfer 6, 53–79 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Ivanov Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolev, N.I. (2015). Critical Multiphase Flow. In: Multiphase Flow Dynamics 5. Springer, Cham. https://doi.org/10.1007/978-3-319-15156-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15156-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15155-7

  • Online ISBN: 978-3-319-15156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics