Skip to main content
  • 2912 Accesses

Abstract

For insufficient cooling of nuclear reactor core the following processes characterizing the core degradation are identified after years of research, see Potter et al. (1985).

800-900∘C: The cylindrical cladding starts to become plastic. The pressure increase inside the cladding leads to ballooning and following failure, Rose et al. (1979), Chapman et al. (1984), Hindle and Mann (1982), Kerb et al. (1982), Rosinger (1984), Arai et al. (1987);

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, D.C., et al.: Three mile island Unit 2 Fission product inventory estimate. Nucl. Technol. 87, 205–213 (1989)

    Google Scholar 

  • Akers, D.W., McCardell, R.K., Russell, M.L., Worku, G.: TMI-2 core materials and fission product inventory. Nucl. Eng. Des. 118, 451 (1990)

    Article  Google Scholar 

  • Arai, S., et al.: Failure correlation for Zircaloy-2 fuel cladding under high temperature transient conditions. Nucl. Sci. Technol. 24(2), 214–219 (1987)

    Article  Google Scholar 

  • Chapman, R.H., Crowley, J.L., Longest, A.W.: Effect of bundle size an cladding de-formation in LOCA simulation results. In: Zirconium in the Nuclear Industry, Sixth Int Symp, ASTM Spec Tech Publ, vol. 824, p. 693 (1984)

    Google Scholar 

  • Fauske & Associates Inc., MAAP4-modular accident analysis program for LWR power plants, vol 2, pt 1: Code structure and theory, prepared for Electric Power Research Institute (1994)

    Google Scholar 

  • Furuta, T., Kawasaki, S.: Acceleration of zircaloy steam reaction by deformation under high temperature transients. J. Nucl. Sci. Technol. 17(3), 243–245 (1980)

    Article  Google Scholar 

  • Hayward, P.J., George, I.M.: Dissolution of UO2, in molten zircaloy-4. Part l: Solubility from 2000 to 2200°C. J. Nucl. Mater. 208, 35–42 (1994)

    Article  Google Scholar 

  • Hayward, R.L., George, L.M.: Dissolution of UO2, in molten zircaloy-4, Part 2: Phase evolution during dissolution and cooling from 2000 to 2500°C specimens. J.Nucl. Mater. 229, 1–13 (1996)

    Article  Google Scholar 

  • Hindle, E.D., Mann, C.A.: An experimental study of the deformation of zircaloy PWR fuel rod cladding under mainly convective cooling. In: Zirconium in the Nuclear Industry, Fifth Int Symp, ASTM Spec Tech Publ, vol. 754, p. 282 (1982)

    Google Scholar 

  • Hofman, G.L., Hayes, S.L., Petri, M.C.: Temperature gradient driven constituent redistribution, in U-Zr Alloys. J. Nucl. Mater. 227, 277–286 (1996)

    Article  Google Scholar 

  • Horst, J.K.: SCDAP/RELAP/MOD2 code manual, vols 1–4, NUREG/CR-5273, EGG-2555 (1990), http://www.inl.gov/relap5/scdap/scdap.htm

  • Juravkov, A.M., Malyshev, E.K.: Kinetika parometalicheskih v avariynych regimah (review). Otchet Instituta atomnoj energii im. IV Kurchatova, 6–2257, 31s

    Google Scholar 

  • Kerb, E.H., et al.: LWR fuel rod behaviour during reactor tests under loss-of-coolant conditions: Results of the FR-2 in-pile tests. J. Nucl. Mater. 107(1), 55–77 (1982)

    Article  Google Scholar 

  • MELCOR 1.8.2, Computer code manual, Reference manuals and programmer’s guides, Sandia National Laboratories, vol. 2 (February 1993)

    Google Scholar 

  • Moalem, M., Olander, D.R.: The high-temperatures solubility of hydrogen in pure and oxygen-containing zircaloy. J. Nucl. Mater. 178, 61 (1991)

    Article  Google Scholar 

  • Olander, D.R.: Materials chemistry and transport modelling for severe accident analysis in light-water reactors III: Fuel dissolution by molten cladding. Nucl. Eng. Des. 162, 257–270 (1996)

    Article  Google Scholar 

  • Olsen, C.S., Jensen, S.M., Carlson, E.R., Cook, B.A.: Materials interactions and temperatures in the Three Mile Island Unit 2 core. Nucl. Technol. 87, 57–94 (1989)

    Google Scholar 

  • Potter, P.E., Rand, M.H., Alcok, C.M.: Some chemical equilibria for accident analysis in pressurized water reactor systems. J. Nucl. Mater. 130, 139–153 (1985)

    Article  Google Scholar 

  • Powers, D.A., Brockmann, J.E., Shiver, A.W.: VANESA, a mechanistic model of radionuclide release and aerosol generation during core debris interaction with concrete. NUREG/CR-4308 (July 1986)

    Google Scholar 

  • Powers, D.A.: Non-ideal solution modeling for predicting chemical phenomena during core debris interactions with concrete, OECD/CSNI Meeting on Core Debris-Concrete Interaction, KTG, Germany, April 1–3 (1992)

    Google Scholar 

  • Reimann, N.: DEHDIS – Ein Berechnungsmodell zur Aufteilung der Nachwärmeleistung in der metallischen und der oxidischen Phase einer LWR-Kernschmelze und im Containment, IRB-NR 381/81, PNS-Nr 614/81 (August 1981)

    Google Scholar 

  • Rose, K.M., Mann, C.A., Hindle, E.D.: The axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident. Nucl. Technol 46(2), 220–227 (1979)

    Google Scholar 

  • Rosinger, H.E.: A model to predict the failure of Zircaloy-4 fuel shearing during postulated LOCA conditions. J. Nucl. Mater. 120(1), 41–54 (1984)

    Article  Google Scholar 

  • Shi, S.-Q.: Hydrogen concentration limit and critical temperature for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 218, 189–201 (1995)

    Article  Google Scholar 

  • Une, K., Imamura, M., Amaya, M., Korei, Y.: Fuel oxidation behaviour of defective BWR fuel rods. J. Nucl. Mater. 223, 40–50 (1995)

    Article  Google Scholar 

  • Urbanic, V.F., Heidrich, T.R.: High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam. J. Nucl. Mater. 75, 251–261 (1978)

    Article  Google Scholar 

  • Veshchunov, M.S., Hofmann, P.: Dissolution of solid UO2 by molten zircaloy. J. Nucl. Mater. 209, 27–40 (1994)

    Article  Google Scholar 

  • Veshchunov, M.S., Hofrnann, P.: Modelling of zircaloy dissolution by molten (Ag, In, Cd) absorber alloy. J. Nucl. Mater. 228, 318–329 (1996)

    Article  Google Scholar 

  • Vierow, K., Liao, Y., Johnson, J., Kenton, M., Gauntt, R.: Severe accident analysis of a PWR station lackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes. Nucl. Eng. Des. 234, 129–145 (2004)

    Article  Google Scholar 

  • Voltchek, A.: On the modelling of the pellet/cladding/steam interactions in the framework of the oxygen diffusion theory, Institut problem besopasnogo razvitija atomnoj energetiki. preprint no NSI-14-93, str 1-25 (1993)

    Google Scholar 

  • Yun, J.I., Suh, K.Y., Kang, C.S.: Heat and fission product transport in a molten U-Zr-O pool with crust. In: Proceedings of ICONE10, 10th International Conference on Nuclear Engineering, Arlington, VA, April 14–18 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Ivanov Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolev, N.I. (2015). Core Degradation. In: Multiphase Flow Dynamics 5. Springer, Cham. https://doi.org/10.1007/978-3-319-15156-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15156-4_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15155-7

  • Online ISBN: 978-3-319-15156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics