High-Order Flux Reconstruction Schemes for LES on Tetrahedral Meshes

  • Jonathan R. BullEmail author
  • Antony Jameson
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)


The use of the high-order Flux Reconstruction (FR) spatial discretization scheme for LES on unstructured meshes is investigated. Simulations of the compressible Taylor-Green vortex at \(Re=1{,}600\) demonstrate that the FR scheme has low numerical dissipation and accurately reproduces the turbulent energy cascade at low resolution, making it ideal for high-order LES. To permit the use of subgrid-scale models incorporating explicit filtering on tetrahedral meshes, a high-order filter acting on the modal form of the solution (i.e. the Dubiner basis functions) is developed. The WALE-Similarity mixed (WSM) model using this filter is employed for LES of the flow over a square cylinder at \(Re=21{,}400\), obtaining reasonable agreement with experiments. Future research will be directed at improved SGS models and filters and at developing high-order hybrid RANS/LES methods.


Large Eddy Simulation Discontinuous Galerkin Tetrahedral Mesh Numerical Dissipation Flux Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was made possible by the support of the NSF under grant number 1114816, monitored by Dr. Leland Jameson, and the Air Force Office of Scientific Research under grant number FA9550-10-1-0418, monitored by Dr. Fariba Fahroo.


  1. 1.
    1st international workshop on high-order CFD methods. At the 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 7–8 Jan 2012Google Scholar
  2. 2.
    2nd international workshop on high-order CFD methods. At DLR, Cologne, Germany, 27–28 May 2013Google Scholar
  3. 3.
    Allaneau, Y., Jameson, A.: Connections between the filtered discontinous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng. 200, 3628–3636 (2011)Google Scholar
  4. 4.
    Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. In: 13th AIAA Fluid and Plasma Dynamics Conference. Snowmass, Colorado, 4–16 July 1980Google Scholar
  5. 5.
    Beck, A., Gassner, G.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theoret. Comput. Fluid Dyn. 27(3–4), 221–237 (2012)Google Scholar
  6. 6.
    Bouffanais, R., Deville, M., Fischer, P., Leriche, E., Weill, D.: Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. J. Sci. Comput. 27(1–3), 151–162 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boyd, J.: The Legendre-Burgers equation: when artificial dissipation fails. Appl. Math. Comput. 217, 1949–1964 (2010)Google Scholar
  8. 8.
    Breuer, M., Rodi, W.: Large-eddy simulation of turbulent flow through a straight square duct and a 180 bend. Direct and Large-Eddy Simulation I, pp. 273–285. Springer, Berlin (1994)CrossRefGoogle Scholar
  9. 9.
    Castonguay, P., Liang, C., Jameson, A.: Simulation of transitional flow over airfoils using the spectral difference method. In: AIAA, pp. 2010–4626 (2010)Google Scholar
  10. 10.
    Castonguay, P., Williams, D., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 267, 400–417 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chapelier, J.B., Plata, M., Renac, F.: Inviscid and viscous simulations of the Taylor-Green vortex flow using a modal Discontinuous Galerkin approach. In: AIAA paper, pp. 2012–3073 (2012)Google Scholar
  12. 12.
    Debonis, J.: Solutions of the Taylor-Green vortex problem using high-resolution explicit finite difference methods. In: AIAA paper, pp. 2013–0382 (2013)Google Scholar
  13. 13.
    Diosady, L., Murman, S.: Design of a variational multiscale method for turbulent compressible flows. In: AIAA paper, pp. 2013–2870 (2013)Google Scholar
  14. 14.
    Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods. C. R. Acad. Sci. I-Math. 332(3), 265–270 (2001)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Gottlieb, D., Hesthaven, J.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hesthaven, J., Warburton, T.: Nodal discontinuous Galerkin Methods: algorithms, analysis, and applications. Springer, New York (2007)Google Scholar
  18. 18.
    Huynh, H.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: AIAA paper (2007). 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 25–28 Jun 2007Google Scholar
  19. 19.
    Jameson, A., Vincent, P.E., Castonguay, P.: On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50, 434 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Karamanos, G., Karniadakis, G.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163(1), 22–50 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Lee, E., Gunzburger, M.: A finite element, filtered eddy-viscosity method for the Navier-Stokes equations with large Reynolds number. J. Math. Anal. Appl. 385, 384–398 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Liang, C., Premasuthan, S., Jameson, A., Wang, Z.: Large eddy simulation of compressible turbulent channel flow with spectral difference method. In: AIAA paper 402 (2009). 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 15. Orlando, FL, 5–8 Jan 2009Google Scholar
  23. 23.
    Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780–801 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lodato, G., Castonguay, P., Jameson, A.: Discrete filter operators for large-eddy simulation using high-order spectral difference methods. Int. J. Numer. Meth. Fluids 72(2), 231–258 (2013)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lubcke, H., Schmidt, S., Rung, T., Thiele, F.: Comparison of LES and RANS in bluff-body flows. J. Wind Eng. Ind. Aerodyn. 89, 1471–1485 (2001)CrossRefGoogle Scholar
  26. 26.
    Lyn, D., Einav, S., Rodi, W., Park, J.: A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304(1), 285–319 (1995)CrossRefGoogle Scholar
  27. 27.
    Lyn, D., Rodi, W.: The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J. Fluid Mech. 267, 353–376 (1994)CrossRefGoogle Scholar
  28. 28.
    Meister, A., Ortleb, S., Sonar, T.: On spectral filtering for discontinuous Galerkin methods on unstructured triangular grids. Math. Schriften Kassel (2009)Google Scholar
  29. 29.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)CrossRefzbMATHGoogle Scholar
  30. 30.
    Parsani, M., Ghorbaniasl, G., Lacor, C., Turkel, E.: An implicit high-order spectral difference approach for large eddy simulation. J. Comput. Phys. 229, 5373–5393 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pasquetti, R.: High-order LES modeling of turbulent incompressible flow. C.R. Méc. 333(1), 39–49 (2005)CrossRefzbMATHGoogle Scholar
  32. 32.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)Google Scholar
  33. 33.
    Taylor, M., Wingate, B.: The natural function space for triangular and tetrahedral spectral elements. SIAM J. Numer. Anal. (1998)Google Scholar
  34. 34.
    Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Wang, B., Bergstrom, D.J.: A dynamic nonlinear subgrid-scale stress model. Phys. Fluids 17, 1 (2005)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Winckelmans, G.S., Wray, A.A., Vasilyev, O.V., Jeanmart, H.: Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys. Fluids 13(5), 1385–1404 (2001)CrossRefGoogle Scholar
  37. 37.
    Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A-Fluid 5(12), 3186–3196 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsStanford UniversityStanfordUSA

Personalised recommendations