Advertisement

Model-Invariant Hybrid LES-RANS Computation of Separated Flow Past Periodic Hills

  • Stephen WoodruffEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)

Abstract

The requirement that physical quantities not vary with a hybrid LES-RANS model’s blending parameter imposes conditions on the computation that lead to better results across LES-RANS transitions. This promises to allow placement of those transitions so that LES is performed only where required by the physics, improving computational efficiency. The approach is applied to separated flow past periodic hills, where good predictions of separation-bubble size are seen due to the gradual, controlled, LES-RANS transition and the resulting enhanced near-wall eddy viscosity.

Keywords

Eddy Viscosity Separation Bubble Reattachment Point RANS Model Free Shear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe, K., Jang, Y.-J., Leschziner, M.A.: An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Heat Fluid Flow 24, 181–198 (2003)CrossRefGoogle Scholar
  2. 2.
    Breuer, M., Jaffrezic, B., Arora, K.: Hybrid LES-RANS technique based on a one-equation near-wall model. Theoret. Comput. Fluid Dyn. 22, 157–187 (2008)Google Scholar
  3. 3.
    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills—numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Progr. Aerosp. Sci. 44, 349–377 (2008)CrossRefGoogle Scholar
  5. 5.
    Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Germano, M.: Properties of the hybrid RANS/LES filter. Theoret. Comput. Fluid Dyn. 17, 225–231 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jaffrezic, B., Breuer, M.: Application of an explicit algebraic Reynolds stress model within a hybrid LES-RANS method. Flow Turbul. Combust. 81, 415–448 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Jakirlic, S., Maduta, R.: On “Steady” RANS modeling for improved prediction of wall-bounded separation. AIAA Paper 2014–0586 (2014)Google Scholar
  9. 9.
    Keating, A., De Prisco, G., Piomelli, U.: Interface conditions for hybrid RANS/LES calculations. Heat Fluid Flow 27, 777–788 (2006)CrossRefGoogle Scholar
  10. 10.
    Medic, G., Templeton, J.A., Kalitzin, G.: A formulation for near-wall RANS/LES coupling. Int. J. Eng. Sci. 44, 1099–1112 (2006)CrossRefGoogle Scholar
  11. 11.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRefGoogle Scholar
  12. 12.
    Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modelling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)CrossRefGoogle Scholar
  14. 14.
    Rumsey, C.: Exploring a method for improving turbulent separated-flow predictions with \(k\)-\(\omega \) models. NASA TM-2009-215952 (2009)Google Scholar
  15. 15.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  16. 16.
    Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36, 173–184 (1998)CrossRefzbMATHGoogle Scholar
  17. 17.
    Strelets, M.: Detached eddy simulation of massively separated flows. In: AIAA 2001–0879 (2001)Google Scholar
  18. 18.
    Temmerman, L., Hadziabdic, M., Leschziner, M.A., Hanjalic, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Heat Fluid Flow 26, 173–190 (2005)CrossRefGoogle Scholar
  19. 19.
    Temmerman, L., Leschziner, M.A., Mellen, C.P., Fröhlich, J.: Investigation of wall-function approximations and subgrid-scale models in large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Heat Fluid Flow 24, 157–180 (2003)CrossRefGoogle Scholar
  20. 20.
    Wallin, S., Girimaji, S.: Commutation error mitigation in variable-resolution PANS closure: proof of concept in decaying isotropic turbulence. AIAA Paper 2011–3105 (2009)Google Scholar
  21. 21.
    Woodruff, S.L.: Coupling turbulence in hybrid LES-RANS techniques. Seventh International Symposium on Turbulence and Shear-Flow Phenomena, Ottawa, Canada (2010)Google Scholar
  22. 22.
    Woodruff, S.L.: A new formulation for hybrid LES-RANS computations. AIAA Paper 2013–2722 (2013)Google Scholar
  23. 23.
    Ziefle, J., Stolz, S., Kleiser, L.: Large-eddy simulation of separated flow in a channel with streamwise-periodic constrictions. AIAA J. 46, 1705–1718 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NASA Langley Research CenterHamptonUSA

Personalised recommendations