Advertisement

Automatic Hybrid RANS/LES Strategy for Industrial CFD

  • Grégoire PontEmail author
  • Paola Cinnella
  • J. C. Robinet
  • Pierre Brenner
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)

Abstract

An automatic HRL (Hybrid RANS/LES) strategy is investigated in FLUSEPA, a finite-volume solver developed by Airbus Defense and Space. A HRL turbulence model is coupled to a high-order hybrid numerical approximation method. Concerning the turbulence model, the well-known \(k-\varepsilon \) two equations RANS turbulence model is sensitized to the grid as suggested by Perot and Gadebusch (Phy Fluids 19:1–11, 2007). Concerning the numerical strategy, a third-order accurate upwind approximation method is locally re-centered in vortex dominated regions to achieve non-dissipative fourth-order accuracy. Results are presented for a 2D backward facing step and an an axisymmetry backward facing step, which represent good prototypes of after body flows.

Keywords

Eddy Viscosity Separation Point Numerical Dissipation Reattachment Point Hairpin Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Perot, B.J., Gadebush, J.: A self-adapting turbulence model for flow simulation at any mesh resolution. Phy. Fluids 19, 1–11 (2007)Google Scholar
  2. 2.
    Drikakis, D.: Advances in turbulent flow computations using hight-resolution methods. Prog. Aerosp. Sci. 39, 412–424 (2003)CrossRefGoogle Scholar
  3. 3.
    Haider,F.: Discrétisation en maillage non structuré général et application LES. Ph.D. thesis, UPMC (2009)Google Scholar
  4. 4.
    Pont, G., Cinnella, P., Robinet, J.C., Brenner, P.: Development of numerical schemes for hybrid rans/les modelling in an industrial cfd solver. In: AIAA Conference (2013)Google Scholar
  5. 5.
    Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D.: Large eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Troutt, T.R., Scheelke, B., Norman, T.R.: Organizes structures in a reattaching separated flow filed. J. Fluid Mech. 143, 413–427 (1984)CrossRefGoogle Scholar
  7. 7.
    Sasaki, K., Kiya, M.: Three-dimensional vortex structure in a leading-edge separation bubble at moderate reynolds numbers. J. Fluid Eng. 113, 405–410 (1991)CrossRefGoogle Scholar
  8. 8.
    Moreau, P., Labb, J., Dupoirieux, F., Borghi, R.: Experimental and numerical study of a turbulent recirculation zone with combustion. Turbul. Shear Flows 5, 337–346 (1987)CrossRefGoogle Scholar
  9. 9.
    Deck, S.: Recent improvement in the Zonal Detached Eddy Simulation ( ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2011)CrossRefGoogle Scholar
  10. 10.
    Hall, S.D., Behinia, M., Fetcher, C.A.J., Morrison, G.L.: Investigation of the secondary corner vortex in a benchmark turbulent backward-facing step using cross-correlation particle imaging velocimetry. Exp. Fluids 35, 139–151 (2003)CrossRefGoogle Scholar
  11. 11.
    Driver, D.M., Seegmiller H.L., Marvin, J.G.: Time-dependant behavior of a reattaching shear layer. AIAA J. 25, 345–356 (1985)Google Scholar
  12. 12.
    Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–2374 (1997)Google Scholar
  13. 13.
    Deprés, D., Reijasse, P., Dussauge, P.: Analysis of unsteadiness in after-body transonic flows. AIA J. 42, 2541 (2004)CrossRefGoogle Scholar
  14. 14.
    Meliga, P., Reijasse, P.: Unsteady transonic flow behind an axisymmetric afterbody with two boosters. In: Proceedings of the 25th AIAA Applied Aerodynamics Conference, Paper No. 2007-4564, Miami (2007)Google Scholar
  15. 15.
    Deck, S., Torigny, P.: Unsteadyness of an axisymmetric separating-reattaching flow. Phys. Fluids 19, 065103 (2007)CrossRefGoogle Scholar
  16. 16.
    Weiss, P.E., Deck, S., Robinet, J.C., Sagaut, P.: On the dynamics of axisymmetric turbulent separating/reattaching flows. Phys. Fluids, 21, 075–103 (2009)Google Scholar
  17. 17.
    Weiss, P.E.: Simulation numrique et analyse physique d’un coulement d’arrire-corps axisymtrique et application au contrle des charges latrales. Ph.D. thesis, Universit Pierre et Marie Curie (2010)Google Scholar
  18. 18.
    Lê, T.H.H.: Etude expérimentale du couplage entre lécoulement transonique darrière-corps et les charges latérales dans les tuyères propulsives. Ph.D. thesis, University of Poitiers (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Grégoire Pont
    • 1
    Email author
  • Paola Cinnella
    • 2
  • J. C. Robinet
    • 2
  • Pierre Brenner
    • 3
  1. 1.Dynfluid Laboratory, Airbus Space and DefenseLes MureauxFrance
  2. 2.Dynfluid LaboratoryLes MureauxFrance
  3. 3.Airbus Space and DefenseLes MureauxFrance

Personalised recommendations