Unified RANS-LES Simulations of Turbulent Swirling Jets and Channel Flows

  • Stefan HeinzEmail author
  • Michael K. Stöllinger
  • Harish Gopalan
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)


The accurate and efficient simulation of both attached and separated flows represents a huge challenge. RANS methods suffer from the lack of ability to simulate instantaneous turbulence structures, and LES methods are computationally very expensive regarding the simulation of wall-bounded flows, which have to be considered very often. A promising alternative is the use of hybrid RANS-LES methods, but existing hybrid methods like DES face many questions. The paper focuses on the use of unified RANS-LES methods implied by stochastic analysis as an alternative to using existing hybrid RANS-LES methods. The theoretical basis of the approach applied and applications to turbulent channel flows and turbulent swirling jet flows will be presented. The accuracy and cost features of the unified RANS-LES model will be discussed in comparison with other (in particular DES) hybrid methods.


Large Eddy Simulation Vortex Breakdown Turbulent Channel Flow Detach Eddy Simulation Swirl Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially sponsored by the Air Force Office of Scientific Research, USAF, under grant number FA9550-05-1-0485 monitored by Dr. John Schmisseur. We would also like to acknowledge support through NASA’s NRA research opportunities in aeronautics program (Grant No. NNX12AJ71A) with Dr. P. Balakumar as the technical officer. The computational resources have been provided by the UW Institute for Scientific Computation.


  1. 1.
    Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: 1st AFOSR International Conference on DNS/LES, pp. 4–8, Greyden Press, Columbus, Ruston, LA, USA, 4–8 Aug 1997Google Scholar
  2. 2.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008)CrossRefGoogle Scholar
  3. 3.
    Heinz, S.: Statistical Mechanics of Turbulent Flows, 1st edn. Springer, Berlin, Heidelberg, New York, Tokyo (2003)CrossRefGoogle Scholar
  4. 4.
    Heinz, S.: On Fokker-Planck equations for turbulent reacting flows. Part 2. Filter density function for large eddy simulation. Flow Turbul. Combust. 70(1–4), 153–181 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Heinz, S.: Unified turbulence models for LES and RANS, FDF and PDF simulations. Theoret. Comput. Fluid Dyn. 21(2), 99–118 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gopalan, H., Heinz, S., Stöllinger, M.: A unified RANS-LES model: computational development, accuracy and cost. J. Comput. Phys. 249, 249–279 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Heinz, S., Zemtsop, C., Gopalan, H., Stöllinger, M.: Unified RANS-LES Simulations of Swirling Turbulent Jet Flows (2015)Google Scholar
  8. 8.
    Heinz, S.: Realizability of dynamic subgrid-scale stress models via stochastic analysis. Monte Carlo Meth. Appl. 14(4), 311–329 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lilly, D.K.: The representation of small-scale turbulence in numerical simulation of experiments. In: Goldstine, H.H. (ed.) Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, pp. 195–210, IBM, Yorktown Heights, NY, 1967Google Scholar
  10. 10.
    Reichardt, H.: Vollständige Darstellung der Turbulenten Geschwindigkeitsverteilung in Glatten Leitungen. ZAMM—J. Appl. Math. Mech. 31(7), 208–219 (2006)CrossRefGoogle Scholar
  11. 11.
    De Langhe, C., Merci, B., Lodefier, K., Dick, E.: Hybrid RANS/LES modelling with an approximate renormalization group. II: applications. J. Turbul. 6(14), 1–16 (2005)MathSciNetGoogle Scholar
  12. 12.
    Keating, A., Piomelli, U.: A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7(1), 1–24 (2006)MathSciNetGoogle Scholar
  13. 13.
    Dean, R.B.: Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. 100, 215–223 (1978)CrossRefGoogle Scholar
  14. 14.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  15. 15.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20(3), 181–195 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hamba, F.: Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow. Int. J. Heat Fluid Flow 30(1), 20–31 (2009)CrossRefGoogle Scholar
  17. 17.
    OPENFOAM: The Open Source CFD Tool Box, User guide, version 1.6. Technical report, 2009Google Scholar
  18. 18.
    Zemtsop, C.P., Stöllinger, M.K., Heinz, S., Stanescu, D.: Large eddy simulation of swirling turbulent jet flows in absence of vortex breakdown. AIAA J. 47(12), 3011–3021 (2009)CrossRefGoogle Scholar
  19. 19.
    Gilchrist, R.T., Naughton, J.W.: Experimental study of incompressible jets with different initial swirl distributions: mean results. AIAA J. 43(4), 741–751 (2005)CrossRefGoogle Scholar
  20. 20.
    Chigier, N.A., Chervinsky, A.: Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. 34(2), 443–451 (1967)CrossRefGoogle Scholar
  21. 21.
    Shiri, A., George, W.K., Naughton, J.W.: Experimental study of the far field of incompressible swirling jets. AIAA J. 46(8), 2002–2009 (2008)CrossRefGoogle Scholar
  22. 22.
    De Langhe, C., Merci, B., Dick, E.: Application of a RG hybrid RANS/LES model to swirling confined turbulent jets. J. Turbul. 7(56), 1–19 (2006)MathSciNetGoogle Scholar
  23. 23.
    Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006)Google Scholar
  24. 24.
    Heinz, S., Gopalan, H.: Realizable versus non-realizable dynamic sub-grid scale stress models. Phys. Fluids 24(11), 115105/1–23 (2012)Google Scholar
  25. 25.
    Balakumar, P., Rubinstein, R., Rumsey, C.L.: DNS, enstrophy balance, and the dissipation equation in a separated turbulent channel flow. In: 43rd AIAA Fluid Dynamics Conference, AIAA Paper 13-2723. San Diego, California (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Heinz
    • 1
    Email author
  • Michael K. Stöllinger
    • 2
  • Harish Gopalan
    • 3
  1. 1.Department of MathematicsUniversity of WyomingLaramieUSA
  2. 2.Mechanical Engineering DepartmentUniversity of WyomingLaramieUSA
  3. 3.Mechanical EngineeringUnion CollegeSchenectadyUSA

Personalised recommendations