Skip to main content

Unified RANS-LES Simulations of Turbulent Swirling Jets and Channel Flows

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Abstract

The accurate and efficient simulation of both attached and separated flows represents a huge challenge. RANS methods suffer from the lack of ability to simulate instantaneous turbulence structures, and LES methods are computationally very expensive regarding the simulation of wall-bounded flows, which have to be considered very often. A promising alternative is the use of hybrid RANS-LES methods, but existing hybrid methods like DES face many questions. The paper focuses on the use of unified RANS-LES methods implied by stochastic analysis as an alternative to using existing hybrid RANS-LES methods. The theoretical basis of the approach applied and applications to turbulent channel flows and turbulent swirling jet flows will be presented. The accuracy and cost features of the unified RANS-LES model will be discussed in comparison with other (in particular DES) hybrid methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: 1st AFOSR International Conference on DNS/LES, pp. 4–8, Greyden Press, Columbus, Ruston, LA, USA, 4–8 Aug 1997

    Google Scholar 

  2. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008)

    Article  Google Scholar 

  3. Heinz, S.: Statistical Mechanics of Turbulent Flows, 1st edn. Springer, Berlin, Heidelberg, New York, Tokyo (2003)

    Book  Google Scholar 

  4. Heinz, S.: On Fokker-Planck equations for turbulent reacting flows. Part 2. Filter density function for large eddy simulation. Flow Turbul. Combust. 70(1–4), 153–181 (2003)

    Article  MATH  Google Scholar 

  5. Heinz, S.: Unified turbulence models for LES and RANS, FDF and PDF simulations. Theoret. Comput. Fluid Dyn. 21(2), 99–118 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gopalan, H., Heinz, S., Stöllinger, M.: A unified RANS-LES model: computational development, accuracy and cost. J. Comput. Phys. 249, 249–279 (2013)

    Article  MathSciNet  Google Scholar 

  7. Heinz, S., Zemtsop, C., Gopalan, H., Stöllinger, M.: Unified RANS-LES Simulations of Swirling Turbulent Jet Flows (2015)

    Google Scholar 

  8. Heinz, S.: Realizability of dynamic subgrid-scale stress models via stochastic analysis. Monte Carlo Meth. Appl. 14(4), 311–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lilly, D.K.: The representation of small-scale turbulence in numerical simulation of experiments. In: Goldstine, H.H. (ed.) Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, pp. 195–210, IBM, Yorktown Heights, NY, 1967

    Google Scholar 

  10. Reichardt, H.: Vollständige Darstellung der Turbulenten Geschwindigkeitsverteilung in Glatten Leitungen. ZAMM—J. Appl. Math. Mech. 31(7), 208–219 (2006)

    Article  Google Scholar 

  11. De Langhe, C., Merci, B., Lodefier, K., Dick, E.: Hybrid RANS/LES modelling with an approximate renormalization group. II: applications. J. Turbul. 6(14), 1–16 (2005)

    MathSciNet  Google Scholar 

  12. Keating, A., Piomelli, U.: A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7(1), 1–24 (2006)

    MathSciNet  Google Scholar 

  13. Dean, R.B.: Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng. 100, 215–223 (1978)

    Article  Google Scholar 

  14. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  15. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20(3), 181–195 (2006)

    Article  MATH  Google Scholar 

  16. Hamba, F.: Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow. Int. J. Heat Fluid Flow 30(1), 20–31 (2009)

    Article  Google Scholar 

  17. OPENFOAM: The Open Source CFD Tool Box, User guide, version 1.6. http://www.openfoam.org. Technical report, 2009

    Google Scholar 

  18. Zemtsop, C.P., Stöllinger, M.K., Heinz, S., Stanescu, D.: Large eddy simulation of swirling turbulent jet flows in absence of vortex breakdown. AIAA J. 47(12), 3011–3021 (2009)

    Article  Google Scholar 

  19. Gilchrist, R.T., Naughton, J.W.: Experimental study of incompressible jets with different initial swirl distributions: mean results. AIAA J. 43(4), 741–751 (2005)

    Article  Google Scholar 

  20. Chigier, N.A., Chervinsky, A.: Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. 34(2), 443–451 (1967)

    Article  Google Scholar 

  21. Shiri, A., George, W.K., Naughton, J.W.: Experimental study of the far field of incompressible swirling jets. AIAA J. 46(8), 2002–2009 (2008)

    Article  Google Scholar 

  22. De Langhe, C., Merci, B., Dick, E.: Application of a RG hybrid RANS/LES model to swirling confined turbulent jets. J. Turbul. 7(56), 1–19 (2006)

    MathSciNet  Google Scholar 

  23. Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006)

    Google Scholar 

  24. Heinz, S., Gopalan, H.: Realizable versus non-realizable dynamic sub-grid scale stress models. Phys. Fluids 24(11), 115105/1–23 (2012)

    Google Scholar 

  25. Balakumar, P., Rubinstein, R., Rumsey, C.L.: DNS, enstrophy balance, and the dissipation equation in a separated turbulent channel flow. In: 43rd AIAA Fluid Dynamics Conference, AIAA Paper 13-2723. San Diego, California (2013)

    Google Scholar 

Download references

Acknowledgments

This work was partially sponsored by the Air Force Office of Scientific Research, USAF, under grant number FA9550-05-1-0485 monitored by Dr. John Schmisseur. We would also like to acknowledge support through NASA’s NRA research opportunities in aeronautics program (Grant No. NNX12AJ71A) with Dr. P. Balakumar as the technical officer. The computational resources have been provided by the UW Institute for Scientific Computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heinz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Heinz, S., Stöllinger, M.K., Gopalan, H. (2015). Unified RANS-LES Simulations of Turbulent Swirling Jets and Channel Flows. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics