Two Non-zonal Approaches to Accelerate RANS to LES Transition of Free Shear Layers in DES

  • Charles MockettEmail author
  • Marian Fuchs
  • Andrey Garbaruk
  • Michael Shur
  • Philippe Spalart
  • Michael Strelets
  • Frank Thiele
  • Andrey Travin
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)


We present two novel approaches to improve the behaviour of DES in the region where an attached boundary layer (handled with RANS) flows into a separated shear layer (to be resolved using LES). The approaches aim to be generally-applicable and retain the non-zonal nature of DES. Furthermore, the formulations are local and can be readily implemented in general-purpose solvers. One approach introduces an adaptive grid scale definition, sensitised to the local vorticity orientation. The second approach, which can be combined with the first, involves the incorporation of alternative SGS model formulations that discern between quasi 2D and developed 3D flow states. Both modifications lead to a strong reduction of eddy viscosity in the early shear layer. Consequently, a significant acceleration of RANS to LES transition is demonstrated for a plane shear layer, a backwards-facing step and a round jet, with results from two different flow solvers shown. The greatest improvement is seen when the approaches are applied in combination.


Shear Layer Eddy Viscosity Isotropic Turbulence Smagorinsky Model RANS Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 within the project Go4Hybrid (“Grey Area Mitigation for Hybrid RANS-LES Methods”) under grant agreement no. 605361. The authors from St. Petersburg acknowledge support from Boeing Commercial Airplanes and the Russian Scientific Foundation (Grant 14-11-00060). Fruitful discussions with Dr. J. Kok (NLR), including the recommendation of Ref. [8], are acknowledged with thanks.


  1. 1.
    Chauvet, N., Deck, S., Jacquin, L.: Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007)CrossRefGoogle Scholar
  2. 2.
    Deardorff, J.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970)CrossRefzbMATHGoogle Scholar
  3. 3.
    Deck, S.: Recent improvements in the zonal detached-eddy simulation (ZDES) formulation. Theoret. Comput. Fluid Dyn. 26, 523–550 (2012)CrossRefGoogle Scholar
  4. 4.
    Delville, J.: La décomposition orthogonal aux valeurs propres et l’analyse de l’organisation tridimensionnelle de écoulements turbulents cisaillés libres. PhD thesis, Université de Poitiers (1995)Google Scholar
  5. 5.
    Kok, J., van der Ven, H.: Destabilizing free shear layers in X-LES using a stochastic subgrid-scale model. Technical Report NLR-TP-2009-327, National Aerospace Laboratory NLR (2009)Google Scholar
  6. 6.
    Kok, J., van der Ven H.: Capturing free shear layers in hybrid RANS-LES simulations of separated flow. Technical Report NLR-TP-2012-333, National Aerospace Laboratory NLR, (2012)Google Scholar
  7. 7.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Nicoud, F., Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 5106 (2011)CrossRefGoogle Scholar
  9. 9.
    Shur, M., Spalart, P., Strelets, M.: LES-based evaluation of a microjet noise reduction concept in static and flight conditions. J. Sound Vib. 330(17), 4083–4097 (2011)CrossRefGoogle Scholar
  10. 10.
    Shur, M., Spalart, P., Strelets, M., Travin, A.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008)CrossRefGoogle Scholar
  11. 11.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  12. 12.
    Spalart, P.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  13. 13.
    Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. La recherche aérospatiale 1(1), 5–21 (1994)Google Scholar
  14. 14.
    Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20(3), 181–195 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES, vol. 1 (1997)Google Scholar
  16. 16.
    Travin, A., Shur, M., Strelets, M., Spalart, P.: Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63(1), 293–313 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Vogel, J., Eaton, J.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transfer 107(4), 922–929 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Charles Mockett
    • 1
    Email author
  • Marian Fuchs
    • 1
  • Andrey Garbaruk
    • 2
  • Michael Shur
    • 2
  • Philippe Spalart
    • 3
  • Michael Strelets
    • 2
  • Frank Thiele
    • 1
  • Andrey Travin
    • 2
  1. 1.CFD Software Entwicklungs- und Forschungsgesellschaft mbHBerlinGermany
  2. 2.New Technologies and ServicesSt. Petersburg State Polytechnic UniversitySt. PetersburgRussian Federation
  3. 3.Boeing Commercial AirplanesSeattleUSA

Personalised recommendations