Advertisement

A Renormalized Detached Eddy Simulation Method Without Log-Layer Mismatch

  • Ning HuEmail author
  • Han-Dong Ma
  • Wei-Min Zhang
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 130)

Abstract

In order to correct the log-layer mismatch (LLM) commonly encountered in detached eddy simulation (DES) of attached or weakly-detached flows, a multi-layered order function \(\ell _\mathrm{{M,ML}}\) is defined. One of the layers of \(\ell _\mathrm{{M,ML}}\) is a plateau and is crucial to the log-law of the mean velocity profile. The plateau height can be determined theoretically from the usual log-law formulation. A target function \(\ell _\mathrm{{M,target}}\) is defined which inherits near wall scaling of SA model and extends it to reach the correct plateau. The function is used to renormalize (stretching/compressing) turbulent fluctuations during DES calculation. This renormalized DES (RNDES) is tested in both an incompressible channel flow and a \({\text {Ma}}=2.25\) compressible boundary layer (CBL) flow. RNDES predicts correct mean velocity profiles free of LLM and correct turbulent intensities as well, indicating that RNDES develops correct turbulent structural ensemble under the constraint of statistical quantities.

Keywords

Large Eddy Simulation Reynolds Stress Turbulent Fluctuation Detach Eddy Simulation Compressible Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Author thanks Prof. Xin-Liang Li for providing the OpenCFD-SC program. This work is supported by the National Natural Science Fund of China (No. 11302213).

References

  1. 1.
    Spalart, P.R., Jou, W.H., Strelets, M., et al.: In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES, pp. 137–147. Greyden Press, Columbus (1997)Google Scholar
  2. 2.
    Nikitin, N.V., Nicoud, F., Wasistho, B., et al.: Phys. Fluids 12, 1629–1632 (2000)CrossRefGoogle Scholar
  3. 3.
    Caruelle, B., Ducros, F.: Int. J. Comput. Fluid Dyn. 17(6), 433–51 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Piomelli, U., Balaras, E., et al.: Int. J. Heat Fluid Flow 24, 538–550 (2003)CrossRefGoogle Scholar
  5. 5.
    Spalart, P.R., Deck, S., et al.: Theor. Comp. Fluid Dyn. 20, 181–195 (2006)Google Scholar
  6. 6.
    Travin, A.K., Shur, M.L., Spalart, P.R., et al.: In: Wesseling, P. (ed.) European Conference on Computational Fluid Dynamics, TU Delft, The Netherlands (2006)Google Scholar
  7. 7.
    Deck, S., Weiss P.-E., Pamiès, M., et al.: Comput. Fluids 48, 1–15 (2011)Google Scholar
  8. 8.
    She, Z.S., Hu, N., Wu, Y.: Acta. Mech. Sin. 25, 731–736 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    She, Z.S., Chen, X., Wu, Y., et al. Acta. Mech. Sin. (2010)Google Scholar
  10. 10.
    She, Z.S., Wu, Y., Chen, X., et al.: New J. Phys. 14, 093054 (2012)CrossRefGoogle Scholar
  11. 11.
    Gao, H., Li, X.L., Fu, D.X., Ma, Y.W.: Chin. Phys. Lett. 22, 1709 (2005)CrossRefGoogle Scholar
  12. 12.
    Fernholz, H.H., Angew, Z.: Math. Mech. 51, T148 (1971)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.China Academy of Aerospace AerodynamicsBeijingChina

Personalised recommendations