Skip to main content

Ionic Liquids in Surface Protection

  • Chapter
Electrochemistry in Ionic Liquids

Abstract

This chapter presents some research lines on ionic liquids applications, such as corrosion protection through coatings formation, lubrication and tribology. All these applications depend on physicochemical interactions of ionic liquid molecules with materials surfaces. In the case of corrosion protection, different aprotic ionic liquids, mainly imidazolium, pyrrolidinium or phosphonium derivatives, with different anions, and some protic ionic liquids and their interactions with metallic materials, such as steels or Li, Mg, Cu, Al and its alloys, have been studied obtaining, in some cases, high corrosion reduction efficiencies, up to 90 %. In addition, ionic liquids can be used as synthetic liquid lubricants able to withstand very high temperatures without excessive thermal or oxidative degradation, showing very low friction coefficients and wear rates. Halogen-free ionic liquids are currently being developed to avoid corrosion or tribocorrosion of metallic surfaces and possible generation of toxic species. Different kinds of nanocomposites or two-component ionic liquids are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wamser CA (1948) Hydrolysis of fluoboric acid in aqueous solution. J Am Chem Soc 70(3):1209–1215. doi:10.1021/ja01183a101

    Article  CAS  Google Scholar 

  2. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5(4):361–363. doi:10.1039/b304400a

    Article  CAS  Google Scholar 

  3. Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8(37):4265–4279. doi:10.1039/b607329h

    Article  CAS  Google Scholar 

  4. Endres F, MacFarlane D, Abbott A (eds) (2008) Electrodeposition from ionic liquids. Wiley, Weinheim

    Google Scholar 

  5. Abbott AP, Frisch G, Ryder KS (2013) Electroplating using ionic liquids. Annu Rev Mater Res 43(1):335–358. doi:10.1146/annurev-matsci-071312-121640

    Article  CAS  Google Scholar 

  6. Uerdingen M, Treber C, Balser M, Schmitt G, Werner C (2005) Corrosion behaviour of ionic liquids. Green Chem 7(5):321–325. doi:10.1039/b419320m

    Article  CAS  Google Scholar 

  7. Howlett PC, MacFarlane DR, Hollenkamp AF (2004) High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid-State Lett 7(5):A97–A101. doi:10.1149/1.1664051

    Article  CAS  Google Scholar 

  8. Howlett PC, Brack N, Hollenkamp AF, Forsyth M, MacFarlane DR (2006) Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J Electrochem Soc 153(3):A595–A606. doi:10.1149/1.2164726

    Article  CAS  Google Scholar 

  9. Shin J-H, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152(5):A978–A983. doi:10.1149/1.1890701

    Article  CAS  Google Scholar 

  10. Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E (1997) Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J Power Sources 68(1):91–98. doi:10.1016/S0378-7753(97)02575-5

    Article  CAS  Google Scholar 

  11. Howlett PC, Izgorodina EI, Forsyth M, MacFarlane DR (2006) Electrochemistry at negative potentials in bis(trifluoromethanesulfonyl)amide ionic liquids. Z Phys Chem 220:1483. doi:10.1524/zpch.2006.220.10.1483

    Article  CAS  Google Scholar 

  12. Randström S, Montanino M, Appetecchi GB, Lagergren C, Moreno A, Passerini S (2008) Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 53(22):6397–6401. doi:10.1016/j.electacta.2008.04.058

    Article  Google Scholar 

  13. Zheng J, Gu M, Chen H, Meduri P, Engelhard MH, Zhang J-G, Liu J, Xiao J (2013) Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries. J Mater Chem A 1(29):8464–8470. doi:10.1039/c3ta11553d

    Article  CAS  Google Scholar 

  14. Forsyth M, Howlett PC, Tan SK, MacFarlane DR, Birbilis N (2006) An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31. Electrochem Solid-State Lett 9(11):B52–B55. doi:10.1149/1.2344826

    Article  CAS  Google Scholar 

  15. Howlett PC, Efthimiadis J, Hale P, van Riessen GA, MacFarlane DR, Forsyth M (2010) Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide. J Electrochem Soc 157(11):C392–C398. doi:10.1149/1.3486119

    Article  CAS  Google Scholar 

  16. Birbilis N, Howlett PC, MacFarlane DR, Forsyth M (2007) Exploring corrosion protection of Mg via ionic liquid pretreatment. Surf Coat Technol 201(8):4496–4504. doi:10.1016/j.surfcoat.2006.09.050

    Article  CAS  Google Scholar 

  17. Howlett PC, Khoo T, Mooketsi G, Efthimiadis J, MacFarlane DR, Forsyth M (2010) The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys. Electrochim Acta 55(7):2377–2383. doi:10.1016/j.electacta.2009.11.080

    Article  CAS  Google Scholar 

  18. Caporali S, Ghezzi F, Giorgetti A, Lavacchi A, Tolstogouzov A, Bardi U (2007) Interaction between an imidazolium based ionic liquid and the AZ91D magnesium alloy. Adv Eng Mater 9(3):185–190. doi:10.1002/adem.200600250

    Article  CAS  Google Scholar 

  19. Shkurankov A, El Abedin SZ, Endres F (2007) AFM-assisted investigation of the corrosion behaviour of magnesium and AZ91 alloys in an ionic liquid with varying water content. Aust J Chem 60(1):35–42. doi:10.1071/ch06305

    Article  CAS  Google Scholar 

  20. Sun J, Howlett PC, MacFarlane DR, Lin J, Forsyth M (2008) Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2− and P(O)2(R)2− anions with potential application for corrosion mitigation of magnesium alloys. Electrochim Acta 54(2):254–260. doi:10.1016/j.electacta.2008.08.020

    Article  CAS  Google Scholar 

  21. Efthimiadis J, Neil WC, Bunter A, Howlett PC, Hinton BRW, MacFarlane DR, Forsyth M (2010) Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy. ACS Appl Mater Interfaces 2(5):1317–1323. doi:10.1021/am900889n

    Article  CAS  Google Scholar 

  22. Forsyth M, Neil WC, Howlett PC, Macfarlane DR, Hinton BRW, Rocher N, Kemp TF, Smith ME (2009) New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces. ACS Appl Mater Interfaces 1(5):1045–1052. doi:10.1021/am900023j

    Article  CAS  Google Scholar 

  23. Chang J-K, Chen S-Y, Tsai W-T, Deng M-J, Sun IW (2007) Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochem Commun 9(7):1602–1606. doi:10.1016/j.elecom.2007.03.009

    Article  CAS  Google Scholar 

  24. Chang J-K, Chen S-Y, Tsai W-T, Deng M-J, Sun IW (2008) Improved corrosion resistance of magnesium alloy with a surface aluminum coating electrodeposited in ionic liquid. J Electrochem Soc 155(3):C112–C116. doi:10.1149/1.2828016

    Article  CAS  Google Scholar 

  25. K-r L, Liu Q, Han Q, G-f T (2011) Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl3 ionic liquids. Trans Nonferrous Metals Soc China 21(9):2104–2110. doi:10.1016/S1003-6326(11)60980-1

    Article  Google Scholar 

  26. Perissi I, Bardi U, Caporali S, Lavacchi A (2006) High temperature corrosion properties of ionic liquids. Corros Sci 48(9):2349–2362. doi:10.1016/j.corsci.2006.06.010

    Article  CAS  Google Scholar 

  27. Ashassi-Sorkhabi H, Es’haghi M (2009) Corrosion inhibition of mild steel in acidic media by [BMIm]Br ionic liquid. Mater Chem Phys 114(1):267–271. doi:10.1016/j.matchemphys.2008.09.019

    Article  CAS  Google Scholar 

  28. Zhang QB, Hua YX (2009) Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim Acta 54(6):1881–1887. doi:10.1016/j.electacta.2008.10.025

    Article  CAS  Google Scholar 

  29. Shukla SK, Murulana LC, Ebenso EE (2011) Inhibitive effect of imidazolium based aprotic ionic liquids on mild steel corrosion in hydrochloric acid medium. Int J Electrochem Sci 6(9):4286–4295

    CAS  Google Scholar 

  30. Ibrahim MAM, Messali M, Moussa Z, Alzahrani AY, Alamry SN, Hammouti B (2011) Corrosion inhibition of carbon steel by imidazolium and pyridinium cations ionic liquids in acidic environment. Port Electrochim Acta 29(6):375–389. doi:10.4152/pea.201106375

    Article  CAS  Google Scholar 

  31. Zarrouk A, Messali M, Zarrok H, Salghi R, Ali AA, Hammouti B, Al-Deyab SS, Bentiss F (2012) Synthesis, characterization and comparative study of new functionalized imidazolium-based ionic liquids derivatives towards corrosion of C38 steel in molar hydrochloric acid. Int J Electrochem Sci 7(8):6998–7015

    CAS  Google Scholar 

  32. Likhanova NV, Domínguez-Aguilar MA, Olivares-Xometl O, Nava-Entzana N, Arce E, Dorantes H (2010) The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros Sci 52(6):2088–2097. doi:10.1016/j.corsci.2010.02.030

    Article  CAS  Google Scholar 

  33. Guzmán-Lucero D, Olivares-Xometl O, Martínez-Palou R, Likhanova NV, Domínguez-Aguilar MA, Garibay-Febles V (2011) Synthesis of selected vinylimidazolium ionic liquids and their effectiveness as corrosion inhibitors for carbon steel in aqueous sulfuric acid. Ind Eng Chem Res 50(12):7129–7140. doi:10.1021/ie1024744

    Article  Google Scholar 

  34. Likhanova NV, Olivares-Xometl O, Guzmán-Lucero D, Domínguez-Aguilar MA, Nava N, Corrales-Luna M, Mendoza MC (2011) Corrosion inhibition of carbon steel in acidic environment by imidazolium ionic liquids containing vinyl-hexafluorophosphate as anion. Int J Electrochem Sci 6(10):4514–4536

    CAS  Google Scholar 

  35. Tüken T, Demir F, Kıcır N, Sığırcık G, Erbil M (2012) Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corros Sci 59:110–118. doi:10.1016/j.corsci.2012.02.021

    Article  Google Scholar 

  36. Barham HA, Brahim SA, Rozita Y, Mohamed KA (2011) Carbon steel corrosion behaviour in aqueous carbonated solution of MEA/[bmim] [DCA]. Int J Electrochem Sci 6(1):181–198

    CAS  Google Scholar 

  37. Zhou X, Yang H, Wang F (2011) [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim Acta 56(11):4268–4275. doi:10.1016/j.electacta.2011.01.081

    Article  CAS  Google Scholar 

  38. Scendo M, Uznanska J (2011) The effect of ionic liquids on the corrosion inhibition of copper in acidic chloride solutions. Int J Corros. doi:10.1155/2011/718626

    Google Scholar 

  39. Liu QX, El Abedin SZ, Endres F (2006) Electroplating of mild steel by aluminium in a first generation ionic liquid: a green alternative to commercial Al-plating in organic solvents. Surf Coat Technol 201(3–4):1352–1356. doi:10.1016/j.surfcoat.2006.01.065

    Article  CAS  Google Scholar 

  40. Bakkar A, Neubert V (2013) Electrodeposition and corrosion characterisation of micro- and nano-crystalline aluminium from AlCl3/1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta 103:211–218. doi:10.1016/j.electacta.2013.03.198

    Article  CAS  Google Scholar 

  41. Marczewska-Boczkowska K, Kosmulski M (2009) The effect of chloride and water on the corrosion of copper in 1-butyl-3-methylimidazolium tetrafluoroborate. Mater Manuf Processes 24(10–11):1173–1179. doi:10.1080/10426910902976146

    Article  CAS  Google Scholar 

  42. Espinosa T, Sanes J, Jimenez AE, Bermudez MD (2013) Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper. Appl Surf Sci 273:578–597. doi:10.1016/j.apsusc.2013.02.083

    Article  CAS  Google Scholar 

  43. Zheng Y, Zhang S, Lü X, Wang Q, Zuo Y, Liu L (2012) Low-temperature electrodeposition of aluminium from lewis acidic 1-allyl-3-methylimidazolium chloroaluminate ionic liquids. Chin J Chem Eng 20(1):130–139. doi:10.1016/S1004-9541(12)60372-3

  44. Bermudez M-D, Jimenez A-E, Martinez-Nicolas G (2007) Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion-corrosion processes. Appl Surf Sci 253(17):7295–7302. doi:10.1016/j.apsusc.2007.03.008

    Article  CAS  Google Scholar 

  45. Bardi U, Caporali S, Craig M, Giorgetti A, Perissi I, Nicholls JR (2009) Electrodeposition of aluminium film on P90 Li-Al alloy as protective coating against corrosion. Surf Coat Technol 203(10–11):1373–1378. doi:10.1016/j.surfcoat.2008.11.003

    Article  CAS  Google Scholar 

  46. Spikes H (2001) Tribology research in the twenty-first century. Tribol Int 34(12):789–799. doi:10.1016/S0301-679X(01)00079-2

    Article  Google Scholar 

  47. Holmberg K, Siilasto R, Laitinen T, Andersson P, Jasberg A (2013) Global energy consumption due to friction in paper machines. Tribol Int 62:58–77. doi:10.1016/j.triboint.2013.02.003

    Article  Google Scholar 

  48. Ye CF, Liu WM, Chen YX, Yu LG (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245. doi:10.1039/b106935g

    Article  Google Scholar 

  49. Klaver TPC, Luppi M, Sluiter MHF, Kroon MC, Thijsse BJ (2011) DFT study of 1,3-dimethylimidazolium tetrafluoroborate on Al and Cu(111) surfaces. J Phys Chem C 115(30):14718–14730. doi:10.1021/jp200401h

    Article  CAS  Google Scholar 

  50. Valencia H, Kohyama M, Tanaka S, Matsumoto H (2009) Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J Chem Phys 131(24):244705. doi:10.1063/1.3273087

    Article  Google Scholar 

  51. Minami I (2009) Ionic liquids in tribology. Molecules 14(6):2286–2305. doi:10.3390/molecules14062286

    Article  CAS  Google Scholar 

  52. Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38(9):2590–2599. doi:10.1039/b817899m

    Article  CAS  Google Scholar 

  53. Bermudez M-D, Jimenez A-E, Sanes J, Carrion F-J (2009) Ionic liquids as advanced lubricant fluids. Molecules 14(8):2888–2908. doi:10.3390/molecules14082888

    Article  CAS  Google Scholar 

  54. Torimoto T, Tsuda T, K-i O, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22(11):1196–1221. doi:10.1002/adma.200902184

    Article  CAS  Google Scholar 

  55. Palacio M, Bhushan B (2010) A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol Lett 40(2):247–268. doi:10.1007/s11249-010-9671-8

    Article  CAS  Google Scholar 

  56. Schluecker E, Wasserscheid P (2011) Ionic liquids in mechanical engineering. Chem Ing Tech 83(9):1476–1484. doi:10.1002/cite.201100110

    CAS  Google Scholar 

  57. Somers A, Howlett P, MacFarlane D, Forsyth M (2013) A review of ionic liquid lubricants. Lubricants 1(1):3–21. doi:10.3390/lubricants1010003

    Article  Google Scholar 

  58. Angell CA, Ansari Y, Zhao ZF (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27. doi:10.1039/c1fd00112d

    Article  Google Scholar 

  59. Bermudez M-D (2010) Special issue on ionic liquids in tribology. Tribol Lett 40(2):213–284

    Google Scholar 

  60. Dörr N (2012) Special issue on ionic liquids as lubricants. Proceedings of the Institution of Mechanical Engineers, Part J. J Eng Tribol 226(J11):889–1006

    Google Scholar 

  61. Predel T, Pohrer B, Schluecker E (2010) Ionic liquids as alternative lubricants for special applications. Chem Eng Technol 33(1):132–136. doi:10.1002/ceat.200900325

    Article  CAS  Google Scholar 

  62. Kondo Y, Koyama T, Tsuboi R, Nakano M, Miyake K, Sasaki S (2013) Tribological performance of halogen-free ionic liquids as lubricants of hard coatings and ceramics. Tribol Lett 51(2):243–249. doi:10.1007/s11249-013-0159-1

    Article  CAS  Google Scholar 

  63. Minami I, Inada T, Okada Y (2012) Tribological properties of halogen-free ionic liquids. Proceedings of the Institution of Mechanical Engineers, Part J. J Eng Tribol 226(J11):891–902. doi:10.1177/1350650112446276

  64. Kronberger M, Pejakovic V, Gabler C, Kalin M (2012) How anion and cation species influence the tribology of a green lubricant based on ionic liquids. Proceedings of the Institution of Mechanical Engineers, Part J. J Eng Tribol 226(J11):933–951. doi:10.1177/1350650112459012

  65. Espinosa T, Sanes J, Jimenez A-E, Bermudez M-D (2013) Protic ammonium carboxylate ionic liquid lubricants of OFHC copper. Wear 303(1–2):495–509. doi:10.1016/j.wear.2013.03.041

    Article  CAS  Google Scholar 

  66. Espinosa T, Jimenez M, Sanes J, Jimenez A-E, Iglesias M, Bermudez M-D (2014) Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire-stainless steel interface. Tribol Lett 53(1):1–9. doi:10.1007/s11249-013-0238-3

    Article  CAS  Google Scholar 

  67. Liu X, Pu J, Wang L, Xue Q (2013) Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications. J Mater Chem A 1(11):3797–3809. doi:10.1039/c3ta00764b

    Article  CAS  Google Scholar 

  68. Zhao W, Wang Y, Zeng Z, Wu X, Chen J, Xue Q (2012) Micro/nano-texture design for improving tribological properties of DLC-IL composite films. Nanosci Nanotechnol Lett 4(9):901–909. doi:10.1166/nnl.2012.1399

    Article  CAS  Google Scholar 

  69. Liu X, Wang L, Xue Q (2011) DLC-based solid-liquid synergetic lubricating coatings for improving tribological behavior of boundary lubricated surfaces under high vacuum condition. Wear 271(5–6):889–898. doi:10.1016/j.wear.2011.03.021

    Article  CAS  Google Scholar 

  70. Camillone N, Chidsey CED, Liu GY, Putvinski TM, Scoles G (1991) Surface-structure and thermal motion of normal-alkane thiols self-assembled on Au(111) studied by low-energy helium diffraction. J Chem Phys 94(12):8493–8502. doi:10.1063/1.460082

    Article  CAS  Google Scholar 

  71. Pu J, Liu X, Wang L, Xue Q (2011) Formation and tribological properties of two-component ultrathin ionic liquid films on Si. Surf Interface Anal 43(10):1332–1340. doi:10.1002/sia.3718

    Article  CAS  Google Scholar 

  72. Pu J, Jiang D, Mo Y, Wang L, Xue Q (2011) Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled monolayer modified silicon. Surf Coat Technol 205(20):4855–4863. doi:10.1016/j.surfcoat.2011.04.089

    Article  CAS  Google Scholar 

  73. Xiao H, Guo D, Liu S, Pan G, Lu X (2011) Film thickness of ionic liquids under high contact pressures as a function of alkyl chain length. Tribol Lett 41(2):471–477. doi:10.1007/s11249-010-9729-7

    Article  CAS  Google Scholar 

  74. Smith AM, Lovelock KRJ, Gosvami NN, Welton T, Perkin S (2013) Quantized friction across ionic liquid thin films. Phys Chem Chem Phys 15(37):15317–15320. doi:10.1039/c3cp52779d

    Article  CAS  Google Scholar 

  75. Shah FU, Glavatskih S, Antzutkin ON (2013) Boron in tribology: from borates to ionic liquids. Tribol Lett 51(3):281–301. doi:10.1007/s11249-013-0181-3

    Article  CAS  Google Scholar 

  76. Pejakovic V, Kronberger M, Mahrova M, Vilas M, Tojo E, Kalin M (2012) Pyrrolidinium sulfate and ammonium sulfate ionic liquids as lubricant additives for steel/steel contact lubrication. Proceedings of the Institution of Mechanical Engineers, Part J. J Eng Tribol 226(J11):923–932. doi:10.1177/1350650112448978

  77. Amann T, Dold C, Kailer A (2012) Rheological characterization of ionic liquids and ionic liquid crystals with promising tribological performance. Soft Matter 8(38):9840–9846. doi:10.1039/c2sm26030a

    Article  CAS  Google Scholar 

  78. Hayes R, El Abedin SZ, Atkin R (2009) Pronounced structure in confined aprotic room-temperature ionic liquids. J Phys Chem B 113(20):7049–7052. doi:10.1021/jp902837s

    Article  CAS  Google Scholar 

  79. Wakeham D, Hayes R, Warr GG, Atkin R (2009) Influence of temperature and molecular structure on ionic liquid solvation layers. J Phys Chem B 113(17):5961–5966. doi:10.1021/jp900815q

    Article  CAS  Google Scholar 

  80. Elbourne A, Sweeney J, Webber GB, Wanless EJ, Warr GG, Rutland MW, Atkin R (2013) Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. Chem Commun 49(60):6797–6799. doi:10.1039/c3cc42844c

    Article  CAS  Google Scholar 

  81. Watanabe S, Takiwatari K, Nakano M, Miyake K, Tsuboi R, Sasaki S (2013) Molecular behavior of room-temperature ionic liquids under lubricating condition. Tribol Lett 51(2):227–234. doi:10.1007/s11249-013-0130-1

    Article  CAS  Google Scholar 

  82. Ranke J, Othman A, Fan P, Mueller A (2009) Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity. Int J Mol Sci 10(3):1271–1289. doi:10.3390/ijms10031271

    Article  CAS  Google Scholar 

  83. Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3(23):5192–5200. doi:10.1039/b106900d

    Article  CAS  Google Scholar 

  84. Zhao W, Pu J, Yu Q, Zeng Z, Wu X, Xue Q (2013) A novel strategy to enhance micro/nano-tribological properties of DLC film by combining micro-pattern and thin ionic liquids film. Colloids Surf A Physicochem Eng Asp 428:70–78. doi:10.1016/j.colsurfa.2013.03.047

    Article  CAS  Google Scholar 

  85. An R, Zhu Y, Wu N, Xie W, Lu J, Feng X, Lu X (2013) Wetting behavior of ionic liquid on mesoporous titanium dioxide surface by atomic force microscopy. ACS Appl Mater Interfaces 5(7):2692–2698. doi:10.1021/am400175z

    Article  CAS  Google Scholar 

  86. Kheireddin BA, Lu W, Chen IC, Akbulut M (2013) Inorganic nanoparticle-based ionic liquid lubricants. Wear 303(1–2):185–190. doi:10.1016/j.wear.2013.03.004

    Article  CAS  Google Scholar 

  87. Zhao W, Zeng Z, Peng S, Wu X, Xue Q, Chen J (2013) Fabrication and investigation the microtribological behaviors of ionic liquid-graphene composite films. Tribol Trans 56(3):480–487. doi:10.1080/10402004.2012.754071

    Article  CAS  Google Scholar 

  88. Bou-Malham I, Bureau L (2010) Nanoconfined ionic liquids: effect of surface charges on flow and molecular layering. Soft Matter 6(17):4062–4065. doi:10.1039/c0sm00377h

    Article  CAS  Google Scholar 

  89. Espejo C, Carrion F-J, Martinez D, Bermudez M-D (2013) Multi-walled carbon nanotube-imidazolium tosylate ionic liquid lubricant. Tribol Lett 50(2):127–136. doi:10.1007/s11249-012-0082-x

    Article  CAS  Google Scholar 

  90. Li H, Rutland MW, Atkin R (2013) Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Phys Chem Chem Phys 15(35):14616–14623. doi:10.1039/c3cp52638k

    Article  CAS  Google Scholar 

  91. Sweeney J, Hausen F, Hayes R, Webber GB, Endres F, Rutland MW, Bennewitz R, Atkin R (2012) Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys Rev Lett 109(15), 10.1103/PhysRevLett.109.155502

  92. Mendonca ACF, Padua AAH, Malfreyt P (2013) Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction. J Chem Theory Comput 9(3):1600–1610. doi:10.1021/ct3008827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Ministerio de Economía y Competitividad (Spain) (MAT2011-23162) for financial support. T. Espinosa is grateful to the Ministerio de Educación, Cultura y Deporte (Spain) for a research grant (AP2010-3485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Arias-Pardilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arias-Pardilla, J., Espinosa, T., Bermúdez, M.D. (2015). Ionic Liquids in Surface Protection. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-15132-8_19

Download citation

Publish with us

Policies and ethics