Skip to main content

Electrode Reactions of Tris(2,2′-Bipyridine) Complexes of Some Transition Metals in Ionic Liquids

  • Chapter
Electrochemistry in Ionic Liquids

Abstract

Electrode kinetics of the tris(2,2′-bipyridine) complexes of some transition metals have been studied in various ILs. Such kinetic parameters as diffusion coefficients and rate constants were found to be affected not only by the viscosity of ILs but also by the electrostatic interaction between the charged redox species and the ions composing the ILs. The dependence of the reaction entropy on the ILs was also explained partly by the electrostatic interaction. It is important to take the electrostatic interaction into account in order to understand the electrochemical behavior of the charged species in the ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fawcett WR (2004) Liquids, solutions, and interfaces from classical macroscopic descriptions to modern microscopic details. Oxford University Press, New York

    Google Scholar 

  2. Izutsu K (2009) Electrochemistry in nonaqueous solutions. Wiley, Weinheim

    Book  Google Scholar 

  3. Ohno H (2011) Electrochemical aspects of ionic liquids, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  4. Tachikawa N, Katayama Y, Miura T (2007) Electrode kinetics of some iron complexes in an imide-type room-temperature ionic liquid. J Electrochem Soc 154:F211–F216

    Article  CAS  Google Scholar 

  5. Toshimitsu Y, Katayama Y, Miura T (2012) Electrode reactions of ruthenium–bipyridine complex in amide-type ionic liquids. Electrochim Acta 82:43–47

    Article  CAS  Google Scholar 

  6. Katayama Y, Toshimitsu Y, Miura T (2014) Electrode kinetics of the redox reaction of tris(2,2′-bipyridine)nickel complexes in an ionic liquid. Electrochim Acta 131:36–41

    Article  CAS  Google Scholar 

  7. Katayama Y, Kawahara Y, Toshimitsu Y, Yamato Y, Miura T (2011) Redox reactions of transition metal 2,2′-bipyridine complexes in amide-type ionic liquids. Paper presented at the 62nd Annual Meeting of International Society of Electrochemistry, Niigata, 11–16 September 2011

    Google Scholar 

  8. Bartlett PN, Eastwick-Field V (1993) A reinvestigation of the electrochemistry of [Ni(II)(bpy)3(ClO)4)2] in acetonitrile using rotating disc and rotating ring-disc electrodes. Electrochim Acta 38:2515–2523

    Article  CAS  Google Scholar 

  9. Henne BJ, Bartak DE (1984) Metal-vapor synthesis and electrochemistry of bis(bipyridyl)nickel(0). Inorg Chem 23:369–373

    Article  CAS  Google Scholar 

  10. Yamagata M, Katayama Y, Miura T (2006) Electrochemical behavior of samarium, europium, and ytterbium in hydrophobic room-temperature molten salt systems. J Electrochem Soc 153:E5–E9

    Article  CAS  Google Scholar 

  11. Sahami S, Weaver MJ (1981) Entropic and enthalpic contributions to the solvent dependence of the thermodynamics of transition-metal redox couples: Part I. Couples containing aromatic ligands. J Electroanal Chem 122:155–170

    Article  CAS  Google Scholar 

  12. Barbante GJ, Hogan CF, Hughes AB (2009) Solid state spectroelectrochemistry of microparticles of ruthenium diimine complexes immobilized on optically transparent electrodes. J Solid State Electrochem 13:599–608

    Article  CAS  Google Scholar 

  13. Prasad R, Scaife DB (1977) Electro-oxidation and electro-reduction of some iron (II), cobalt(II) and nickel(II) polypyridyl complexes in acetonitrile. J Electroanal Chem 84:373–386

    Article  CAS  Google Scholar 

  14. Richert SA, Tsang PKS, Sawyer DT (1989) Ligand-centered redox processes for manganese, iron and cobalt, MnL3, FeL3, and CoL3, complexes (L = acetylacetonate, 8-quinolinate, picolinate, 2,2′-bipyridyl, 1,10-phenanthroline) and for their tetrakis(2,6-dichlorophenyl)porphinato complexes[M(Por)]. Inorg Chem 28:2471–2475

    Article  CAS  Google Scholar 

  15. Sato Y, Tanaka N (1969) Polarographic behavior of tris(2,2′-bipyridine)chromium(III) and tris(ethylenediamine)chromium(III) in acetonitrile solutions. Bull Chem Soc Jpn 42:1021–1024

    Article  CAS  Google Scholar 

  16. Katayama Y, Toshimitsu Y, Miura T (2013) Electrode kinetics of tris(2,2′-bipyridine)ruthenium complexes in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Electrochem Soc 160:H219–H228

    Article  Google Scholar 

  17. Katayama Y, Yoshihara M, Miura T (2014) Electrochemical reaction of tris(1,10-phenanthroline)iron complexes in some amide-type ionic liquids. ECS Trans 64(4):109–118

    Article  Google Scholar 

  18. Sahami S, Osteryoung RA (1984) Electrochemical and spectroscopic studies of polypyridine complexes of iron(II/III) and ruthenium(II/III) in the aluminum chloride-N-1-butylpyridinium chloride molten salt. Inorg Chem 23:2511–2518

    Article  CAS  Google Scholar 

  19. McDevitt MR, Addison AW (1993) Medium effects on the redox properties of tris(2,2′-bipyridyl)ruthenium complexes. Inorg Chim Acta 204:141–146

    Article  CAS  Google Scholar 

  20. Saji T, Yamada T, Aoyagui S (1975) Electron-transfer rate constants for redox systems of Fe(III)/Fe(II) complexes with 2,2′-bipyridine and/or cyanide ion as measured by the galvanostatic double pulse method. J Electroanal Chem Interfacial Electrochem 61:147–153

    Article  CAS  Google Scholar 

  21. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  22. Scott AM, Pyati R (2001) Solvent viscosity and interrelated effects on electrochemiluminescence intensity of tris(2,2′-bipyridyl)ruthenium(II). J Phys Chem B 105:9011–9015

    Article  CAS  Google Scholar 

  23. Macartney DH, Sutin N (1983) Electron-exchange rates of polypyridine complexes: electron-transfer reactions involving the tris(polypyridine)nickel(II/III) couple in acidic aqueous media. Inorg Chem 22:3530–3534

    Article  CAS  Google Scholar 

  24. Dolidze TD, Khoshtariya DE, Illner P, Kulisiewicz L, Delgado A, van Eldik R (2008) High-pressure testing of heterogeneous charge transfer in a room-temperature ionic liquid: evidence for solvent dynamic control. J Phys Chem B 112:3085–3100

    Article  CAS  Google Scholar 

  25. Hupp JT, Weaver MJ (1984) Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples. Inorg Chem 23:3639–3644

    Article  CAS  Google Scholar 

  26. Migita T, Tachikawa N, Katayama Y, Miura T (2009) Thermoelectromotive force of some redox couples in an amide-type room-temperature ionic liquid. Electrochemistry 77:639–641

    Article  CAS  Google Scholar 

  27. Yamato Y, Katayama Y, Miura T (2013) Effects of the interaction between ionic liquids and redox couples on their reaction entropies. J Electrochem Soc 160:H309–H314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Katayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Katayama, Y. (2015). Electrode Reactions of Tris(2,2′-Bipyridine) Complexes of Some Transition Metals in Ionic Liquids. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-15132-8_16

Download citation

Publish with us

Policies and ethics