Skip to main content

Electrochemical Reaction of Organic Compounds in Ionic Liquids

  • Chapter
Electrochemistry in Ionic Liquids

Abstract

This chapter discusses the application of ionic liquids as solvent systems for the electrochemical study and electrosynthesis of organic molecules, highlighting some particular examples, with the aim to compare any similarities and differences observed in ionic liquids to behavior observed in conventional solvents. The effect of cosolvents on redox mechanisms and efficiency is discussed. Examples of electrochemical studies related to the oxidation of aromatic rings, amines, and sulfur-containing compounds, as well as the reduction of conjugated alkenes, haloalkanes, aromatic rings, and carbonyl- and nitro-containing compounds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, vol 1, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first Use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Lett 6(5):707–710. doi:10.1021/ol036310e

    Article  CAS  Google Scholar 

  3. Lagrost C, Preda L, Volanschi E, Hapiot P (2005) Heterogeneous electron-transfer kinetics of nitro compounds in room-temperature ionic liquids. J Electroanal Chem 585(1):1–7

    Article  CAS  Google Scholar 

  4. Fuchigami T, Inagi S (2011) Selective electrochemical fluorination of organic molecules and macromolecules in ionic liquids. Chem Commun (Camb) 47(37):10211–10223. doi:10.1039/c1cc12414e

    Article  CAS  Google Scholar 

  5. Feroci M, Orsini M, Rossi L, Inesi A (2012) The double role of ionic liquids in electroorganic synthesis: green solvents and precursors of N-heterocyclic carbenes. Curr Org Synth 9:40–52

    Article  CAS  Google Scholar 

  6. Wagner M, Kvarnström C, Ivaska A (2012) Synthesis of organic electroactive materials in ionic liquids. In: Wei D (ed) Electrochemical nanofabrication: principles and applications. CRC press, Boca Raton

    Google Scholar 

  7. Grimshaw J (2000) Electrochemical reactions and mechanisms in organic chemistry. Elsevier, Amsterdam

    Google Scholar 

  8. Lund H, Hammerich O (eds) (1991) Organic electrochemistry. Marcel Dekker, New York

    Google Scholar 

  9. Belding SR, Rees NV, Aldous L, Hardacre C, Compton RG (2008) Behavior of the heterogeneous electron-transfer rate constants of arenes and substituted anthracenes in room-temperature ionic liquids. J Phys Chem C 112(5):1650–1657

    Article  CAS  Google Scholar 

  10. Lagrost C, Carrie D, Vaultier M, Hapiot P (2003) Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents? J Phys Chem A 107(5):745–752

    Article  CAS  Google Scholar 

  11. Clegg AD, Rees NV, Klymenko OV, Coles BA, Compton RG (2004) Marcus theory of outer-sphere heterogeneous electron transfer reactions: dependence of the standard electrochemical rate constant on the hydrodynamic radius from high precision measurements of the oxidation of anthracene and its derivatives in nonaqueous solvents using the high-speed channel electrode. J Am Chem Soc 126(19):6185–6192

    Article  CAS  Google Scholar 

  12. Bystron T, Bouzek K (2013) Ionic liquids as potential supporting electrolytes for the anodic oxidation of 4-methylanisole. J Electrochem Soc 160(8):G117–G123. doi:10.1149/2.041308jes

    Article  CAS  Google Scholar 

  13. Barnes EO, Mahony AM, Aldous L, Hardacre C, Compton RG (2010) The electrochemical oxidation of catechol and dopamine on platinum in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) and 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4]: adsorption effects in ionic liquid voltammetry. J Electroanal Chem 646(1–2):11–17

    Article  CAS  Google Scholar 

  14. Bhat MA (2012) Mechanistic, kinetic and electroanalytical aspects of quinone–hydroquinone redox system in N-alkylimidazolium based room temperature ionic liquids. Electrochim Acta 81:275–282. doi:10.1016/j.electacta.2012.07.059

  15. Evans RG, Compton RG (2006) A kinetic study of the reaction between N, N-dimethyl-p-toluidine and its electrogenerated radical cation in a room temperature ionic liquid. ChemPhysChem 7(2):488–496

    Article  CAS  Google Scholar 

  16. Evans RG, Klymenko OV, Hardacre C, Seddon KR, Compton RG (2003) Oxidation of N, N, N′, N′-tetraalkyl-para-phenylenediamines in a series of room temperature ionic liquids incorporating the bis(trifluoromethylsulfonyl)imide anion. J Electroanal Chem 556:179–188

    Article  CAS  Google Scholar 

  17. Evans RG, Klymenko OV, Price PD, Davies SG, Hardacre C, Compton RG (2005) A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile. ChemPhysChem 6(3):526–533

    Article  CAS  Google Scholar 

  18. Herath AC, Becker JY (2010) Electrochemical study of tris(4-bromophenyl)amine and 2,2,6,6-tetramethylpiperidine-1-oxyl in room-temperature ionic liquids. Electrochim Acta 55(27):8319–8324

    Article  CAS  Google Scholar 

  19. MacFarlane DR, Pringle JM, Johansson KM, Forsyth SA, Forsyth M (2006) Lewis base ionic liquids. Chem Commun 18:1905–1917 (Cambridge, England)

    Article  Google Scholar 

  20. Fuller J, Carlin RT, Osteryoung RA (1997) The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc 144(11):3881–3886

    Article  CAS  Google Scholar 

  21. Carter MT, Osteryoung RA (1994) Heterogeneous and homogeneous electron transfer reactions of tetrathiafulvalene in ambient temperature chloroaluminate molten salts. J Electrochem Soc 141(7):1713–1720

    Article  CAS  Google Scholar 

  22. Abdul-Rahim O, Simonov AN, Ruther T, Boas JF, Torriero AAJ, Collins DJ, Perlmutter P, Bond AM (2013) The observation of dianions generated by electrochemical reduction of trans-stilbenes in ionic liquids at room temperature. Anal Chem 85:6113–6120. doi:10.1021/ac400915z

    Article  CAS  Google Scholar 

  23. Wawzonek S, Blaha EW, Behkey R, Runner ME (1955) Polarographic studies in acetonitrile and dimethylformamide: II. Behavior of aromatic olefins and hydrocarbons. J Electrochem Soc 102(5):235–242. doi:10.1149/1.2430036

    Article  CAS  Google Scholar 

  24. Grodzka PG, Elving PJ (1963) Polarographic reduction of the phenyl‐substituted ethenes: II. Electrochemical kinetic parameters and mechanism in dimethylformamide. J Electrochem Soc 110(3):231–236. doi:10.1149/1.2425716

    Article  CAS  Google Scholar 

  25. Funt BL, Gray DG (1970) A study of some primary processes in electropolymerization by cyclic voltammetry of phenyl‐substituted ethylenes. J Electrochem Soc 117(8):1020–1024. doi:10.1149/1.2407711

    Article  Google Scholar 

  26. Troll T, Baizer MM (1974) Cyclic voltammetry of phenyl-substituted ethylenes in DMF and HMPA. Electrochim Acta 19(12):951–953. doi:10.1016/0013-4686(74)85049-8

    Article  CAS  Google Scholar 

  27. Kojima H, Bard AJ (1975) An A.C. technique for determining the rates of rapid electrode reactions of aromatic compounds in aprotic media. J Electroanal Chem Interfacial Electrochem 63(2):117–129. doi:10.1016/S0022-0728(75)80285-3

    Article  CAS  Google Scholar 

  28. Jones A, Kronenwetter H, Manchanayakage R (2012) Electrochemical reductive coupling of 2-cyclohexen-1-one in a mixture of ionic liquid and water. Electrochem Commun 25:8–10. doi:10.1016/j.elecom.2012.09.020

    Article  CAS  Google Scholar 

  29. Bastida RM, Brillas E, Costa JM (1987) Electrohydrodimerization of 4,4-dimethyl-2-cyclohexen-1-one in dimethylformamide on a mercury electrode. J Electroanal Chem Interfacial Electrochem 227(1–2):67–75. doi:10.1016/0022-0728(87)80066-9

    Article  CAS  Google Scholar 

  30. Feng Q, Huang K, Liu S, Wang H, Yan W (2012) Electrochemical reduction of benzoyl chloride to benzil in ionic liquid BMIMBF4. J Phys Org Chem 25(6):506–510. doi:10.1002/poc.1946

    Article  CAS  Google Scholar 

  31. Cheek GT, Horine PA (1984) Electrochemical reduction of benzoyl chloride and benzoyl fluoride. J Electrochem Soc 131(8):1796–1801. doi:10.1149/1.2115963

    Article  CAS  Google Scholar 

  32. Hiejima Y, Hayashi M, Uda A, Oya S, Kondo H, Senboku H, Takahashi K (2010) Electrochemical carboxylation of α-chloroethylbenzene in ionic liquids compressed with carbon dioxide. Phys Chem Chem Phys 12(8):1953–1957. doi:10.1039/b920413j

    Article  CAS  Google Scholar 

  33. Lagrost C, Gmouh S, Vaultier M, Hapiot P (2004) Specific effects of room temperature ionic liquids on cleavage reactivity: example of the carbon-halogen bond breaking in aromatic radical anions. J Phys Chem A 108(29):6175–6182. doi:10.1021/jp049017k

    Article  CAS  Google Scholar 

  34. Shen Y, Inagi S, Atobe M, Fuchigami T (2013) Electrocatalytic debromination of open-chain and cyclic dibromides in ionic liquids with cobalt(II)salen complex as mediator. Res Chem Intermed 39(1):89–99. doi:10.1007/s11164-012-0634-6

    Article  CAS  Google Scholar 

  35. Tokuda M, Hayashi A, Suginome H (1991) Synthesis of dimethyl 1,2-cycloalkanedicarboxylates by electrochemical cyclization of dimethyl α,α′-dibromoalkanedioates using a copper anode. Bull Chem Soc Jpn 64(8):2590–2592. doi:10.1246/bcsj.64.2590

    Article  CAS  Google Scholar 

  36. Gaillon L, Bedioui F (2004) Voltammetric analysis of the catalytic reactivity of electrogenerated CoI-salen with organohalogenated derivatives in an ionic liquid at room temperature. J Mol Catal A Chem 214(1):91–94

    Article  CAS  Google Scholar 

  37. Doherty AP, Koshechko V, Titov V, Mishura A (2007) Freon electrochemistry in room-temperature ionic liquids. J Electroanal Chem 602(1):91–95

    Article  CAS  Google Scholar 

  38. Wang Y, Rogers EI, Belding SR, Compton RG (2010) The electrochemical reduction of 1,4-benzoquinone in 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)-imide, [C2mim][NTf2]: a voltammetric study of the comproportionation between benzoquinone and the benzoquinone dianion. J Electroanal Chem 648(2):134–142. doi:10.1016/j.jelechem.2010.07.016

    Article  CAS  Google Scholar 

  39. Nikitina VA, Nazmutdinov RR, Tsirlina GA (2011) Quinones electrochemistry in room-temperature ionic liquids. J Phys Chem B 115(4):668–677. doi:10.1021/jp1095807

    Article  CAS  Google Scholar 

  40. Boldrin Zanoni MV, Rogers EI, Hardacre C, Compton RG (2010) The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids. Anal Chim Acta 659(1–2):115–121

    Article  Google Scholar 

  41. Janik B, Elving PJ (1968) Polarographic behavior of nucleosides and nucleotides of purines, pyrimidines, pyridines, and flavines. Chem Rev 68(3):295–319. doi:10.1021/cr60253a003

    Article  CAS  Google Scholar 

  42. Santhanam KSV, Elving PJ (1974) Redox pattern for purine and 6-substituted purines in nonaqueous media. Free radical behavior. J Am Chem Soc 96(6):1653–1660. doi:10.1021/ja00813a002

    Article  CAS  Google Scholar 

  43. Zhao S-F, Lu J-X, Bond AM, Zhang J (2012) Remarkable sensitivity of the electrochemical reduction of benzophenone to proton availability in ionic liquids. Chemistry 18(17):5290–5301. doi:10.1002/chem.201103365

    Article  CAS  Google Scholar 

  44. O’Toole S, Pentlavalli S, Doherty AP (2007) Behavior of electrogenerated bases in room-temperature ionic liquids. J Phys Chem B 111(31):9281–9287

    Article  Google Scholar 

  45. Brooks CA, Doherty AP (2005) Electrogenerated radical anions in room-temperature ionic liquids. J Phys Chem B 109(13):6276–6279

    Article  CAS  Google Scholar 

  46. Doherty AP, Brooks CA (2004) Electrosynthesis in room-temperature ionic liquids: benzaldehyde reduction. Electrochim Acta 49(22–23):3821–3826

    Article  CAS  Google Scholar 

  47. Lagrost C, Hapiot P, Vaultier M (2005) The influence of room-temperature ionic liquids on the stereoselectivity and kinetics of the electrochemical pinacol coupling of acetophenone. Green Chem 7(6):468–474

    Article  CAS  Google Scholar 

  48. Feng Q, Huang K, Liu S, Yu J, Liu F (2011) Electrocatalytic carboxylation of aromatic ketones with carbon dioxide in ionic liquid 1-butyl-3-methylimidazoliumtetrafluoborate to alpha-hydroxy-carboxylic acid methyl ester. Electrochim Acta 56(14):5137–5141. doi:10.1016/j.electacta.2011.03.061

  49. Silvester DS, Wain AJ, Aldous L, Hardacre C, Compton RG (2006) Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][N(Tf)2]. J Electroanal Chem 596(2):131–140

    Article  CAS  Google Scholar 

  50. Ernst S, Ward KR, Norman SE, Hardacre C, Compton RG (2013) Changed reactivity of the 1-bromo-4-nitrobenzene radical anion in a room temperature ionic liquid. Phys Chem Chem Phys 15(17):6382–6389. doi:10.1039/c3cp51004b

    Article  CAS  Google Scholar 

  51. Fry AJ (2003) Strong ion-pairing effects in a room temperature ionic liquid. J Electroanal Chem 546:35–39

    Article  CAS  Google Scholar 

  52. Compton RG, Dryfe RAW, Fisher AC (1994) Photoelectrochemical reduction of p-halonitrobenzenes. J Chem Soc Perkin Trans 2(7):1581–1587. doi:10.1039/p29940001581

    Article  Google Scholar 

  53. Lawless JG, Hawley MD (1969) Mechanistic studies of the decomposition of halonitrobenzene anion radicals. J Electroanal Chem Interfacial Electrochem 21(2):365–375. doi:10.1016/S0022-0728(69)80104-X

    Article  CAS  Google Scholar 

  54. Cooper JA, Compton RG (1998) Photoelectrochemical reduction of p-bromonitrobenzene: mechanistic discrimination via channel microband array voltammetry. Electroanalysis 10(17):1182–1187. doi:10.1002/(sici)1521-4109(199811)10:17<1182::aid-elan1182>3.0.co;2-k

    Article  CAS  Google Scholar 

  55. Amatore C, Capobianco G, Farnia G, Sandona G, Saveant JM, Severin MG, Vianello E (1985) Kinetics and mechanism of self-protonation reactions in organic electrochemical processes. J Am Chem Soc 107(7):1815–1824. doi:10.1021/ja00293a003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel A. J. Torriero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Torriero, A.A.J., MacFarlane, D.R. (2015). Electrochemical Reaction of Organic Compounds in Ionic Liquids. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-15132-8_15

Download citation

Publish with us

Policies and ethics