Skip to main content

Synthesis, Structure and Mechanics of Nano-Particulate Aggregates

  • Chapter
  • First Online:

Abstract

In the most industrial processes nano-sized particles aggregate during their synthesis and the subsequent drying step forming aggregates with sizes in the order of several micrometers. The properties of these aggregates for application or further processing are specified by particle characteristics such as morphology, size, size distribution, bonding mechanism and structure of primary and secondary particles. In this study, the effect of the process parameters during particle synthesis and the following drying step on the structure formation and the resultant product and processing characteristics of precipitated nano-structured silica aggregates were investigated. For this purpose, the educts concentrations, stabilizing additives, mechanical energy input, pH-value and precipitation temperatures were varied during the precipitation process. In addition to the structure formation during precipitation, the resultant micromechanical aggregate properties of spherical silica model aggregates with a well-defined aggregate structure were characterized via nanoindentation and related to the aggregate structure and the interparticulate interaction forces. The micromechanical properties of these model aggregates were modelled depending on their structure using a modified form of the elementary breaking stress model of Rumpf. Since the characterization of particle-particle interactions in the nanometer size range is hardly possible, this effect on the aggregate fracture and deformation behavior was investigated by simulating the nanoindentation measurement of single aggregates using the “discrete element method”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antonyuk S (2006) Deformations-und Bruchverhalten von kugelförmigen Granulaten bei Druck- und Stoßbeanspruchung. Otto-von-Guericke-Universität Magdeburg, Magdeburg

    Google Scholar 

  2. Antonyuk S, Tomas J, Heinrich S, Mörl L (2005) Breakage behaviour of spherical granulates by compression. Chem Eng Sci 60:4031–4044

    Article  Google Scholar 

  3. Arfsten J (2009) Mikromechanische Charakterisierung von Saccharomyces cerevisiae. TU Braunschweig, Braunschweig

    Google Scholar 

  4. Barth N, Schilde C, Kwade A (2014) Influence of electrostatic particle interactions on the properties of particulate coatings of titanium dioxide. J Colloid Interface Sci 420:80–87

    Article  Google Scholar 

  5. Beinert S, Schilde C, Gronau G, Kwade A (2014) CFD-discrete element method simulations combined with compression experiments to characterize stirred-media mills. Chem Eng Technol 37:770–778

    Article  Google Scholar 

  6. Beinert S, Schilde C, Kwade A (2012) Simulation of stress energy and grinding media movement within a wet operated annular gap mill using the discrete element method. Chem Eng Technol 35:1899–2059

    Article  Google Scholar 

  7. BERGNA HE (1994) The colloid chemistry of silica. American Chemical Society, Washington, DC

    Google Scholar 

  8. Bika D, Tardos GI, Panmai S, Farber L, Michaels J (2005) Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technol 150:104–116

    Article  Google Scholar 

  9. Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303:990–993

    Article  Google Scholar 

  10. Gellermann C, Ballweg T, Wolter H (2007) Herstellung von funktionalisierten oxidischen nano-und mikropartikeln und deren verwendung. Chem Ing Tech 79:233–240

    Article  Google Scholar 

  11. Gradl J, Schwarzer H-C, Schwertfirm F, Manhart M, Peukert W (2006) Precipitation of nanoparticles in a T-mixer: coupling the particle population dynamics with hydrodynamics through direct numerical simulation. Chem Eng Process 45:908–916

    Article  Google Scholar 

  12. Hinz W (1971) Grundlagen der Silikatwissenschaft und Silikattechnik. Verlag Bauwesen, Berlin

    Google Scholar 

  13. Iler RK (1979) The chemestry of silica. Wiley, New York

    Google Scholar 

  14. Kendall K (1988) Agglomerate strength. Powder Metall 31:28–31

    Google Scholar 

  15. Kind M (2002) Colloidal aspects of precipitation processes. Chem Eng Sci 57:4287–4293

    Article  Google Scholar 

  16. Kolmogorov AN (1958) Die lokale Struktur der Turbulenz in einer inkompressiblen zähen Flüssigkeit bei sehr großen Reynoldsschen Zahlen. Sammelband zur statistischen Theorie der Turbulenz, Akademie Verlag Berlin

    Google Scholar 

  17. Kucher M, Babic D, Kind M (2006) Precipitation of barium sulfate: experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation. Chem Eng Process 45:900–907

    Article  Google Scholar 

  18. Kwade A (2001) Physical model to describe and select comminution and dispersion processes. Chem Ing Tech 73:703

    Article  Google Scholar 

  19. Kwade A (2003) A stressing model for the description and optimization of grinding processes. Chem Eng Technol 26:199–205

    Article  Google Scholar 

  20. Kwade A, Kampen I, Breitung-Faes S, Schilde C (2009) Basic course—grinding and dispersing with stirred media mills. Arno Kwade, Braunschweig

    Google Scholar 

  21. Kwade A, Schilde C, Burmeister CF, Roth M, Lellig P, Auerhammer GK (2013) Micromechanical properties of colloidal structures. Powders and Grains 1542:939–942

    Google Scholar 

  22. Malzbender J, de Witt G (2002) Indentation load-displacement curve, plastic deformation, and energy. J Mater Res 17:502–511

    Article  Google Scholar 

  23. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268

    MATH  MathSciNet  Google Scholar 

  24. Quarch K (2010) Produktgestaltung an kolloidalen agglomeraten und gelen. Karlsruher Institute of Technology, Karlsruhe

    Google Scholar 

  25. Quarch K, Durand E, Schilde C, Kwade A, Kind M (2010) Mechanical fragmentation of precipitated silica aggregates. Chem Eng Res Des 88:1639–1647

    Article  Google Scholar 

  26. Roth M, Schilde C, Lellig P, Kwade A, Auerhammer GK (2012) Colloidal aggregates tested via nanoindentation and quasi-simultaneous 3D imaging. The Eur Phys J E 35:1–12

    Article  Google Scholar 

  27. Roth M, Schilde C, Lellig P, Kwade A, Auerhammer GK (2012) Simultaneous nanoindentation and 3D imaging on semi-crystalline colloidal films. Chem Lett 41:1110–1112

    Article  Google Scholar 

  28. Rumpf H (1958) Grundlagen und methoden des granulierens. Chem Ing Tech 30:144–158

    Article  Google Scholar 

  29. Saeki T, Ishida M (2011) Production of acid silica sols and gels by using a Y-shaped reactor and dilution technique. Int J Chem Reactor Eng 9:1–11

    Article  Google Scholar 

  30. Schilde C (2013) Structure, mechanics and fracture of nanoparticulate aggregates. TU Braunschweig, Braunschweig

    Google Scholar 

  31. Schilde C, Arlt C, Kwade A (2009) Einfluss des dispergierprozesses bei der herstellung nanopartikelverstärkter verbundwerkstoffe. Chem Ing Tech 81:775–783

    Article  Google Scholar 

  32. Schilde C, Beinert S, Kwade A (2011) Comparison of the micromechanical aggregate properties of nanostructured aggregates with the stress conditions during stirred media milling. Chem Eng Sci 66:4943–4952

    Article  Google Scholar 

  33. Schilde C, Breitung-Faes S, Kwade A (2007) Dispersing and grinding of alumina nano particles by different stress mechanisms. Ceram Forum Int 84:12–17

    Google Scholar 

  34. Schilde C, Breitung-Faes S, Kwade A (2013) Grinding kinetics of nano-sized particles for different electrostatical stabilizing acids in a stirred media mill. Powder Technol 235:1008–1016

    Article  Google Scholar 

  35. Schilde C, Burmeister CF, Kwade A (2014) Measurement and simulation of micromechanical properties of nanostructured aggregates via nanoindentation and DEM-simulation. Powder Technol 259:1–13

    Article  Google Scholar 

  36. Schilde C, Gothsch T, Quarch K, Kind M, Kwade A (2009) Effect of important process parameters on the redispersion process and the micromechanical properties of precipitated silica. Chem Eng Technol 32:1078–1087

    Article  Google Scholar 

  37. Schilde C, Hanisch C, Naumann D, Beierle T, Kwade A (2013) A novel way to vary the structure of precipitated silica and calcium carbonate aggregates in a wide range by using grinding media during the precipitation process. Chem Eng Sci 94:127–137

    Article  Google Scholar 

  38. Schilde C, Kampen I, Kwade A (2010) Dispersion kinetics of nano-sized particles for different dispersing machines. Chem Eng Sci 65:3518–3527

    Article  Google Scholar 

  39. Schilde C, Kwade A (2012) Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation. J Mater Res 27:672–684

    Article  Google Scholar 

  40. Schilde C, Mages-Sauter C, Kwade A, Schuchman HP (2011) Efficiency of different dispersing devices for dispersing nanosized silica and alumina. Powder Technol 207:353–361

    Article  Google Scholar 

  41. Schilde C, Nolte H, Arlt C, Kwade A (2010) Effect of fluid-particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Compos Sci Technol 70:657–663

    Article  Google Scholar 

  42. Schilde C, Westphal B, Kwade A (2012) Effect of primary particle morphology on the micromechanical properties of nanostructured alumina agglomerates. J Nanopart Res 14:1–11

    Article  Google Scholar 

  43. Schlomach J (2005) Feststoffbildung bei technischen Fällprozessen. Universität Karlsruhe, Karlsruhe

    Google Scholar 

  44. Schlomach J, Kind M (2004) Investigations on the semi-batch precipitation of silica. J Colloid Interface Sci 277:316–326

    Article  Google Scholar 

  45. Schönert K (1991) Advances of communication fundamentals and impacts on technology. Aufbereitungstechnik 32:487–494

    Google Scholar 

  46. Schönert K (2004) Breakage of spheres and circular discs. Powder Technol 143–144:2–18

    Article  Google Scholar 

  47. Schwarzer H-C, Peukert W (2004) Combined experimental/numerical study on the precipitation of nanoparticles. AIChE J 50:3234–3247

    Article  Google Scholar 

  48. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  49. Tung H-H, Wang L, Panmai S, Riebe M (2009) Nanoparticle formation via rapid precipitation. Patent US20110053927 A1, EP2273978A1, WO2009131930A1

    Google Scholar 

  50. Vogel L, Peukert W (2005) From single particle impact behaviour to modelling of impact mills. Chem Eng Sci 60:5164–5176

    Article  Google Scholar 

  51. Walker WJ Jr, Reed JS (1999) Influence of slurry parameters on the characteristics of spray-dried granules. J Am Ceram Soc 82:1711–1719

    Google Scholar 

  52. Williams SR, Philipse A (2003) Random packing of spheres and spherocylinders simulated by mechanical contraction. Phys Rev E 67:1–9

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the DFG within the SPP 1273 “colloid technology”. The FIB-SEM pictures were kindly taken by Michael Kappl (MPI, Mainz). Many thanks for the support in the surface functionalization of model silica aggregates and addition of additives during precipitation to Sabrina Zellmer (Institute for Particle Technology, Braunschweig).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schilde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schilde, C., Kwade, A. (2015). Synthesis, Structure and Mechanics of Nano-Particulate Aggregates. In: Kind, M., Peukert, W., Rehage, H., Schuchmann, H. (eds) Colloid Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-15129-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15129-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15128-1

  • Online ISBN: 978-3-319-15129-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics