Skip to main content

Small-Molecule Stabilization Mechanisms of Metal Oxide Nanoparticles

  • Chapter
  • First Online:
Colloid Process Engineering

Abstract

The stabilization of nanoparticles to prevent agglomeration is of great importance for their application. To achieve long-term stable particle dispersions that can be stored and processed, and to clarify stabilization mechanisms in detail, the stabilization of metal oxide nanoparticles with small molecules was investigated. Particularly, the adsorption of the stabilizer and thereby the dynamic and kinetic processes on the surface of the metal oxide nanoparticles are essential for the stabilization process. Within this project, particle-stabilizer-solvent-interactions for different particle systems, ITO and ZrO2, were described and influences of the chain length, the stabilizer concentration as well as the binding strength between stabilizer and surface were investigated and modeled. The developed model enables a prediction of the efficiency of the systems and about optimized combinations of stabilizer-particle-solvent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginley DS, Bright C (2000) Transparent conducting oxides. MRS Bull 25:15–18

    Article  Google Scholar 

  2. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44

    Article  Google Scholar 

  3. Ba J et al (2006) Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration. Chem Mater 18:2848–2854

    Article  Google Scholar 

  4. Tanabe K (1985) Surface and catalytic properties of ZrO2. Mater Chem Phys 13:347–364

    Article  Google Scholar 

  5. Garvie RC et al (1975) Ceramic steel?. Nature 258:703–704

    Article  Google Scholar 

  6. Wilk GD et al (2001) High-k gate dielectrics: Current status and materials properties considerations. J Appl Phys 89:5243

    Article  Google Scholar 

  7. Heuer AH, Hobbs LW (1981) Science and technology of zirconia, American Ceramic Society, vol. 3. Columbus and Ohio

    Google Scholar 

  8. Inoue M et al (1993) Novel synthetic method for the catalytic use of thermally stable zirconia: thermal decomposition of zirconium alkoxides in organic media. Appl Catal A 97:L25–L30

    Article  Google Scholar 

  9. Joo J et al (2003) Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc 125:6553–6557

    Article  Google Scholar 

  10. Buchanan RC, Pope S (1983) Optical and electrical properties of yttria stabilized zirconia (YSZ) crystals. J Electrochem Soc 130:962

    Article  Google Scholar 

  11. Krell A et al (2009) Transparent compact ceramics: Inherent physical issues. Opt Mater 31:1144–1150

    Article  Google Scholar 

  12. Robertson J (2006) High dielectric constant gate oxides for metal oxide si transistors. Rep Prog Phys 69:327–396

    Article  Google Scholar 

  13. Taroata D et al (2012) High integration density capacitors directly integrated in single copper layer of printed circuit boards. IEEE Trans Dielectr Electr Insul 19:298–304

    Article  Google Scholar 

  14. Garnweitner G (2007) Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 3(9):1626–1632

    Article  Google Scholar 

  15. Tsedev N, Garnweitner G (2008) Surface modification of ZrO2 nanoparticles as functional component in optical nanocomposite device. Mater Res Soc Symp Proc 1076:K05–03

    Article  Google Scholar 

  16. Cheema TA, Garnweitner G (2014) Phase-controlled synthesis of ZrO2 nanoparticles for highly transparent dielectric thin films. Cryst Eng Commun 16:3366

    Article  Google Scholar 

  17. Grote C et al (2012) Comparative study of ligand binding during the postsynthetic stabilization of metal oxide nanoparticles. Langmuir 28:14395–14404

    Article  Google Scholar 

  18. Zhou S et al (2007) Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. Langmuir 23:9178–9187

    Article  Google Scholar 

  19. Pinna N et al (2005) Synthesis of yttria-based crystalline and lamellar nanostructures and their formation mechanism.  Small 1(1):112–121

    Article  Google Scholar 

  20. Zellmer S, Garnweitner G (2013) Stabilization of metal oxide nanoparticles by binding of molecular ligands. In: PARTEC—international congress on particle technology, proceedings, Nuremberg, 23–25 April 2013

    Google Scholar 

  21. Grote C et al (2012) Unspecific ligand binding yielding stable colloidal ITO-nanoparticle dispersions. Chem Commun 48:1464–1466

    Article  Google Scholar 

  22. Russel WB et al (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Heller W, Pugh TL (1954) “Steric protection” of hydrophobic colloidal particles by adsorption of flexible macromolecules. J Chem Phys 22:1778

    Article  Google Scholar 

  24. Tripathy SS, Raichur AM (2008) Dispersibility of barium titanate suspension in the presence of polyelectrolytes: A Review. J Dispersion Sci Technol 29:230–239

    Article  Google Scholar 

  25. Overbeek JTG (1966) Colloid stability in aqueous and non-aqueous media. Discuss Faraday Soc 42:7–13

    Article  Google Scholar 

  26. Boal AK et al (2002) Monolayer exchange chemistry of γ-Fe2O3 nanoparticles. Chem Mater 14:2628–2636

    Article  Google Scholar 

  27. Bergström L et al (1992) Consolidation behavior of flocculated alumina suspensions. J Am Ceram Soc 75:3305–3314

    Article  Google Scholar 

  28. Bell NS et al (2005) Rheological properties of nanopowder alumina coated with adsorbed fatty acids.  J Colloid Interface Sci 287:94–106

    Google Scholar 

  29. Siffert B (1994) Location of the shear plane in the electric double layer in an organic medium. J Colloid Interface Sci 163:327–333

    Article  Google Scholar 

  30. Sun D et al (2007) Purification and stabilization of colloidal ZnO nanoparticles in methanol. J Sol-Gel Sci Technol 43(2):237–243

    Article  Google Scholar 

  31. Marczak R et al (2010) Optimum between purification and colloidal stability of ZnO nanoparticles. Adv Powder Technol 21(1):41–49

    Article  Google Scholar 

  32. Segets D et al (2011) Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps. ACS Nano 5(6):4658–4669

    Article  Google Scholar 

  33. Garnweitner G (2010) Small molecule stabilization. In: Segewitz L, Petrowsky M (eds) Polymer aging, Stabilizers and Amphipilic Block Copolymers

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the German Research Foundation within SPP 1273 grants GA 1492/4-1 and 2. Furthermore, the authors acknowledge Dr. D. Vollmer and K. J. Chiad from the MPI Mainz for the isothermal titration calorimetry, Prof. Dr. C. Schmidt and M. Kube from the University Paderborn for the solid-state-13C-NMR spectroscopy, Dr. K. Ibrom and P. Holba-Schulz from the TU Braunschweig for the NMR spectroscopy measurements, Dr. H.-O. Burmeister, S. Meyer and P. Reich for the elemental analysis as well as Dr.-Ing. D. Segets and Prof. Dr.-Ing. W. Peukert from the Institute of Particle Technology (LFG Erlangen) and Dr.-Ing. C. Schilde and Prof. Dr.-Ing. A. Kwade for discussions within the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zellmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zellmer, S., Grote, C., Cheema, T.A., Garnweitner, G. (2015). Small-Molecule Stabilization Mechanisms of Metal Oxide Nanoparticles. In: Kind, M., Peukert, W., Rehage, H., Schuchmann, H. (eds) Colloid Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-15129-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15129-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15128-1

  • Online ISBN: 978-3-319-15129-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics