Skip to main content

Taurine Can Enhance the Protective Actions of Metformin Against Diabetes-Induced Alterations Adversely Affecting Renal Function

  • Conference paper
Taurine 9

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 803))

Abstract

The present study was designed to examine the role of taurine (TAU) on the actions of the oral hypoglycemic drug metformin (MET) against diabetes-induced metabolic and oxidative changes influencing renal function. The experiments were carried out with male Sprague-Dawley rats, 225–250 g, assigned to groups of 6. Diabetes was induced with streptozotocin, 60 mg/kg i.p, in 10 mM citrate buffer pH 4.5. After 14 days, separate groups of diabetic rats received MET, 2.4 mM/kg/day p.o., TAU, 2.4 mM/kg/day p.o., MET plus TAU, or insulin (INS), 4 U/kg/day s.c.. The treatments were daily, starting from day 15, and continued for an additional 41 days. Normal rats and untreated diabetic rats served as controls. The animals had free access to a standard rat chow and tap water throughout the study. A 24 h urine sample was collected starting on day 56. Blood and kidney samples were collected on day 57 and used to isolate plasma and prepare kidney homogenates, respectively, for biochemical testing. Diabetic rats were hyperglycemic, hypoinsulinemic and dyslipidemic, showed proteinuria, hypernatremia, hyperkalemia, and plasma and renal oxidative stress, and, relative to normal rats, exhibited higher levels of blood HbA1c and of plasma TGF-β1, creatinine and urea nitrogen. All the treatments were found highly protective against these changes, with INS appearing more potent than MET, TAU or MET-TAU except for the intracellular redox status. MET was more effective than TAU in reducing glucose-related metabolic changes and proteinuria, less in controlling hypertriglyceridemia and in preserving antioxidant enzymes, and about equipotent against the other changes. Supplementing MET with TAU enhanced the actions of MET to different extents. Overall, this study finds that MET and TAU can offer the same pattern of protection as INS against diabetes-related metabolic and biochemical changes relevant to renal function, and that TAU can enhance the protective actions of MET on diabetes–related renal biochemical and functional alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

INS:

Insulin

MET:

Metformin

STZ:

Streptozotocin

TAU:

Taurine

References

  • Acharya M, Lau-Cam CA (2010) Comparison of the protective actions of N- acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci 17(Suppl 1):S35

    Article  PubMed Central  PubMed  Google Scholar 

  • Al-ajlan AT (2010) Hyperkalemia a therapeutic challenge for physicians treating patients of type 1 and type 2 diabetes mellitus in Saudi Arabia. Open Conf Proc J 1:188–191

    Article  Google Scholar 

  • Al-Rubeaan K, Siddiqui K, Abu Risheh K, Hamsirani R, Alzekri A et al (2011) Correlation between serum electrolytes and fasting glucose and Hb1Ac in Saudi diabetic patients. Biol Trace Elem Res 144:463–468

    Article  CAS  PubMed  Google Scholar 

  • Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA (2011) Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact 192:233–242

    Article  CAS  PubMed  Google Scholar 

  • Anurag P, Anuradha CV (2002) Metformin improves lipid metabolism and attenuates lipid peroxidation in high fructose-fed rats. Diabetes Obes Metab 4:36–42

    Article  CAS  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baxi DB, Singh PK, Doshi AA, Arya S, Mukherjee R, Ramachandran AV (2010) Medicago sativa leaf extract supplementation corrects diabetes induced dyslipidemia, oxidative stress and hepatic renal functions and exerts antihyperglycaemic action as effective as metformin. Ann Biol Res 1:107–119

    Google Scholar 

  • Bellin C, de Wiza DH, Wiernsperger NF, Rösen P (2006) Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin. Horm Metab Res 38:732–739

    Article  CAS  PubMed  Google Scholar 

  • Bojesting M, Amqvist HJ, Hermansson G, Karlberg BE, Ludvigsson J (1994) Declining incidence of nephropathy in insulin-dependent diabetes mellitus. N Engl J Med 330:15–18

    Article  Google Scholar 

  • Bonnefont-Rousselot D, Raji B, Walran S, Gardès-Albert M, Jore A et al (2003) An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metab Clin Exp 52:586–589

    Article  CAS  PubMed  Google Scholar 

  • Budhram R, Pandya KG, Lau-Cam CA (2013) Protection by taurine and thiotaurine against biochemical and cellular alterations induced by diabetes in a rat model. Adv Exp Med Biol 775:321–343

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Caramori ML, Mauer M (2003) Diabetes and nephropathy. Curr Opin Nephrol Hypertens 12:273–282

    Article  CAS  PubMed  Google Scholar 

  • Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Carlsen SM, Rossvoll O, Bjerve KS, Følling I (1996) Metformin improves blood lipid pattern in nondiabetic patients with coronary heart disease. J Intern Med 239:227–233

    Article  CAS  PubMed  Google Scholar 

  • Chen SW, Chen YX, Shi J, Lin Y, Xie WF (2006) The restorative effect of taurine on experimental nonalcoholic steatohepatitis. Dig Dis Sci 51:2225–2234

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, Kim JH, Chang KJ (2006) The effect of dietary taurine supplementation on plasma and liver lipid concentrations and free amino acids concentrations in rats fed a high-cholesterol diet. Adv Exp Med Biol 583:235–242

    Article  CAS  PubMed  Google Scholar 

  • Correia S, Carvalho C, Santos MS, Proença T, Nunes E, Duarte AI, Monteiro P, Seiça R, Oliveira CR, Moreira PI (2008) Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem 4:358–364

    Article  CAS  PubMed  Google Scholar 

  • Dabla PK (2010) Renal function in diabetic nephropathy. World J Diabetes 1:48–56

    Article  PubMed Central  PubMed  Google Scholar 

  • Derosa G, Sibilla S (2007) Optimizing combination treatment in the management of type 2 diabetes. Vasc Health Risk Manag 3:665–671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson MB, Peters AL (1997) An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med 102:99–110

    Article  CAS  PubMed  Google Scholar 

  • DeFronzo RA, Barzilai N, Simonson DC (1991) Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab 73:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Dronavalli S, Duka I, Bakris GI (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444–452

    Article  CAS  PubMed  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MSA, Salam SKN, Salleh MSM (2011) Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. Int J Mol Sci 12:829–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esteghamali A, Eskandari D, Mirmiranpour H, Noshad S, Mousavizadeh M et al (2013) Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr 32:179–185

    Article  Google Scholar 

  • Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27:195–207

    Article  PubMed Central  PubMed  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Yoshitama A, Sugita S, Murakami S (2011) Dietary taurine reduces hepatic secretion of cholesteryl esters and enhances fatty acid oxidation in rats fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo) 57:144–149

    Article  CAS  Google Scholar 

  • Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M, Hardie DG, Macaulay SL, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19:1649–1654

    Article  CAS  PubMed  Google Scholar 

  • Gandhi VM, Cherian KM, Mulky MJ (1992) Hypolipidemic action of taurine in rats. Indian J Exp Biol 30:413–417

    CAS  PubMed  Google Scholar 

  • Goodman HO, Shihabi ZK (1990) Supplemental taurine in diabetic rats: effects on plasma glucose and triglycerides. Biochem Med Metab Biol 43:1–9

    Article  CAS  PubMed  Google Scholar 

  • Guntherberg H, Rost J (1966) The true oxidized glutathione content of red blood cells obtained by new enzyme and paper chromatographic methods. Anal Biochem 15:205–210

    Article  CAS  PubMed  Google Scholar 

  • Ha H, Hwang IA, Park JH, Lee HB (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1):S42–S45

    Article  CAS  PubMed  Google Scholar 

  • Hall-Craggs M, Brenner DE, Vigorito RD, Sutherland JC (1982) Acute renal failure and renal tubular squamous metaplasia following treatment with streptozotocin. Human Pathol 13:597–601

    Article  CAS  Google Scholar 

  • Haneda M, Kikkawa R, Sugimoto T, Koya D, Araki S et al (1995) Abnormalities in protein kinase C and MAP kinase cascade in mesangial cells cultured under high glucose conditions. J Diabetes Complications 4:246–248

    Article  Google Scholar 

  • He L, Sabet A, Djedjos S, Miller R, Sun X et al (2009) Metformin and insulin suppress hepatic gluconeogenesis by inhibiting cAMP signaling through phosphorylation of CREB binding protein (CBP). Cell 137:636–646

    Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Chong ZZ, Shang YC, Maiese K (2010) FOXO3a governs early and late apoptotic endothelial programs during elevated glucose through mitochondrial and caspase signaling. Mol Cell Endocrinol 321:194–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iglesias P, Díez JJ (2008) Insulin therapy in renal disease. Diabetes Obes Metab 10:811–823

    Article  CAS  PubMed  Google Scholar 

  • Ismail N, Becker B, Strzelczyk P, Ritz E (1999) Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int 55:1–28

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42:1529–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kashihara N, Haruna Y, Kondeti VK, Kanwai YS (2010) Oxidative stress in diabetic nephropathy. Curr Med Chem 17:4256–4269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KS, Oh DH, Kim JY, Lee BG, You JS et al (2012) Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLEFT) rats with long term diabetes. Exp Mol Med 44:665–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King GL, Loeken MR (2004) Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122:333–338

    Article  CAS  PubMed  Google Scholar 

  • Koh JH, Lee ES, Hyun M, Kim HM, Choi YJ et al (2014) Taurine alleviates the progression of diabetic nephropathy in type 2 diabetic rat model. Int J Endocrinol 2014:397307. doi:10.1155/2014/397307

    Article  PubMed Central  PubMed  Google Scholar 

  • Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Böttinger EP, Klotman PE, Thorgeirsson SS (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74:991–1003

    CAS  PubMed  Google Scholar 

  • Koren-Kluzer M, Aviram M, Hayek T (2013) Metformin inhibits macrophage cholesterol biosynthesis rate: possible role for metformin-induced oxidative stress. Biochem Biophys Res Commun 439:396–400

    Article  Google Scholar 

  • Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838

    Article  CAS  PubMed  Google Scholar 

  • Lee AYW, Chung SSM (1999) Contribution of the polyol pathway to oxidative stress in diabetic cataract. FASEB J 13:23–30

    CAS  PubMed  Google Scholar 

  • Lee EA, Seo JY, Jiang ZA, Yu MR, Kwon MK et al (2005) Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 upregulation in mesangial cells and in diabetic kidney. Kidney Int 67:1762–1771

    Article  CAS  PubMed  Google Scholar 

  • Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species- regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S241–S245

    Article  CAS  PubMed  Google Scholar 

  • Meyer C, Stumvoli M, Nadkarni V, Dostou J, Mitrakou A, Gerich J (1998) Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest 102:619–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikami N, Hosokawa M, Miyashita K (2012) Dietary combination of fish oil and taurine decreases fat accumulation and ameliorates blood glucose levels in type 2 diabetic/obese KK-Aγ mice. J Food Sci 77:H114–H120

    Article  CAS  PubMed  Google Scholar 

  • Militante JD, Lombardini JB (2004) Dietary taurine supplementation: hypolipidemic and antiatherogenic effects. Nutr Res 24:787–801

    Article  CAS  Google Scholar 

  • Mitrakou A (2011) Kidney: its impact on glucose homeostasis and hormonal regulation. Diabetes Res Clin Pract 93(Suppl 1):S66–S72

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Karube M, Matsuzaki Y, Ikegami T, Doy M et al (2005) Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride- induced hepatic fibrosis. J Hepatol 43:117–125

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki H, Oda H, Yokogoshi HH (1998) Increasing effect of dietary taurine on the serum HDL-cholesterol concentration in rats. Biosci Biotechnol Biochem 62:578–579

    Article  CAS  PubMed  Google Scholar 

  • Mota E, Panduru MN, Popa SG, Mota M (2009) Risk factors for diabetic nephropathy: intrinsic or extrinsic renal? Rom J Intern Med 47:397–401

    CAS  PubMed  Google Scholar 

  • Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K et al (2002) Effect of taurine on cholesterol metabolism in hamsters: up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sci 70:2355–2366

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Kondo-Ohta Y, Tomisawa K (1999) Improvement in cholesterol metabolism in mice given chronic treatment of taurine and fed a high-fat diet. Life Sci 64:83–91

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Sakurai T, Tomoike H (2010) Prevention of hypercholesterolemia and atherosclerosis in the hyperlipidemia- and atherosclerosis-prone Japanese (LAP) quail by taurine supplementation. Amino Acids 38:271–278

    Article  CAS  PubMed  Google Scholar 

  • Nandhini AT, Balakrishnan SD, Anuradha CV (2002) Taurine improves lipid profile in rats fed a high fructose-diet. Nutr Res 22:343–354

    Article  CAS  Google Scholar 

  • Ogawa H (1996) Effect of dietary taurine on lipid metabolism in normocholesterolemic and hypercholesterolemic stroke-prone spontaneously hypertensive rats. Adv Exp Med Biol 403:107–115

    Article  CAS  PubMed  Google Scholar 

  • Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M, Wheeler MB, Giacca A (2007) Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56:2927–2937

    Article  CAS  PubMed  Google Scholar 

  • Palm F, Ortsäter H, Hansell P, Liss P, Carlsson PO (2004) Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin-diabetic rat model. Diabetes Metab Res Rev 20:452–459

    Article  PubMed  Google Scholar 

  • Pandya KG, Budhram R, Clark G, Lau-Cam CA (2013) Comparative evaluation of taurine and thiotaurine as protectants against diabetes-induced nephropathy in a rat model. Adv Exp Med Biol 775:371–394

    Article  CAS  PubMed  Google Scholar 

  • Park T, Lee K (1998) Dietary taurine supplementation reduces plasma and liver cholesterol and triglyceride levels in rats fed a high-cholesterol or a cholesterol-free diet. Adv Exp Med Biol 442:319–325

    Article  CAS  PubMed  Google Scholar 

  • Piña-Zentella G, de la Rosa-Cuevas G, Vázquez-Meza H, Piña E, de Piña MZ (2012) Taurine in adipocytes prevents insulin-mediated H2O2 generation and activates Pka and lipolysis. Amino Acids 42:1927–1935

    Article  PubMed  Google Scholar 

  • Pscherer S, Freude T, Forst T, Nussler AK, Braun KF, Ehnert S (2013) Anti- diabetic treatment regulates pro-fibrotic TGF-β serum levels in type 2 diabetics. Diabetol Metab Syndr 5:48–53

    Article  PubMed Central  PubMed  Google Scholar 

  • Pushpakiran G, Mahalakshmi K, Anuradha CV (2004) Protective effects of taurine on glutathione and glutathione-dependent enzymes in ethanol-fed rats. Pharmazie 59:869–872

    CAS  PubMed  Google Scholar 

  • Raabo E, Terkildsen TC (1960) On the enzymatic determination of blood glucose. Scand J Clin Lab Invest 12:402–407

    Article  CAS  PubMed  Google Scholar 

  • Rao GM (1992) Serum electrolytes and osmolality in diabetes mellitus. Indian J Med Sci 46:301–303

    CAS  PubMed  Google Scholar 

  • Riser BL, Ladson-Wolfford S, Sharba A, Cortes P, Drake K et al (1999) TGF-β receptor expression and binding in rat mesangial cells: modulation by glucose and cyclic mechanical strain. Kidney Int 56:429–439

    Article  Google Scholar 

  • Rosario RF, Prabhakar S (2006) Lipids and diabetic nephropathy. Curr Diabetes Rep 6:455–462

    Article  CAS  Google Scholar 

  • Saleh AAS (2012) Effects of taurine and/or ginseng and their mixture on lipid profile and some parameters indicative of myocardial status in streptozotocin- diabetic rats. J Basic Appl Zool 65:267–273

    Article  CAS  Google Scholar 

  • Schultz Johansen J, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5

    Article  Google Scholar 

  • Shahid SM, Rafique R, Mahboob T (2005) Electrolytes and sodium transport mechanism in diabetes mellitus. Pak J Pharm Sci 18:6–10

    CAS  PubMed  Google Scholar 

  • Stanton RC (2011) Oxidative stress and diabetic kidney disease. Curr Diabetes Rep 11:330–336

    Article  CAS  Google Scholar 

  • Tan ALY, Forbes JM, Cooper ME (2007) AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 27:130–143

    Article  CAS  PubMed  Google Scholar 

  • Taziki S, Sattari MR, Eghba MA (2013) Mechanisms of trazodone-induced cytotoxicity and the protective effects of melatonin and/or taurine toward freshly isolated rat hepatocytes. J Biochem Mol Toxicol 27:457–462

    CAS  PubMed  Google Scholar 

  • Thomas MC, Rosengärd-Bärlund M, Mills V, Rönbanback M, Thomas S et al (2006) Serum lipids and the progression of nephropathy in type 1 diabetes. Diabetes Care 29:317–322

    Google Scholar 

  • Thorn LM, Forsblom C, Fagerudd J et al (2005) Metabolic syndrome in type 1 diabetes. Association with diabetic nephropathy and glycemic control (the FinnDiane Study). Diabetes Care 28:2019–2024

    Article  PubMed  Google Scholar 

  • Tokunaga H, Yoneda Y, Kuriyama K (1983) Streptozotocin-induced elevation of pancreatic taurine content and suppressive effect of taurine on insulin secretion. Eur J Pharmacol 87:237–243

    Article  CAS  PubMed  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH, Baynes J (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Physiol 269(3 Pt 2):F429–438

    CAS  PubMed  Google Scholar 

  • U.S. Renal Data System (2013) CKD in the general population. In: USRDS 2013 annual data report. Atlas of chronic kidney disease and end-stage renal disease in the United States, vol 1 and 2, Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases

    Google Scholar 

  • Wang LJ, Yu YH, Zhang LG, Wang Y, Niu N, Li Q, Guo LM (2008) Taurine rescues vascular endothelial dysfunction in streptozocin-induced diabetic rats: correlated with downregulation of LOX-1 and ICAM-1 expression on aortas. Eur J Pharmacol 597:75–80

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hou X, Liu Y, Lu H, Wei L, Bao Y, Jia W (2013) Serum electrolyte levels in relation to macrovascular complications in Chinese patients with diabetes mellitus. Cardiovasc Diabetol 12:146–153

    Article  PubMed Central  PubMed  Google Scholar 

  • Więcek A, Chudek J, Kokor F (2003) Role of angiotensin II in the progression of diabetic nephropathy-therapeutic implications. Nephrol Dial Transplant 18(Suppl 5):v16–v20

    Article  PubMed  Google Scholar 

  • Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91:261–270

    Article  CAS  PubMed  Google Scholar 

  • Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache Technik der extreme schnellen Abkühlung gröszerer Gewebestücke. Pflügers Arch ges Physiol 170:399–412

    Article  Google Scholar 

  • Wuffelé MG, Kooy A, de Zeeuw D, Stehouwer CD, Gansevoort RT (2004) The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med 256:1–14

    Article  Google Scholar 

  • Yanagita T, Han S-Y, Hu Y, Nagao K, Kitajima H, Murakami S (2008) Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis 7:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Yener S, Comiekci A, Akinci B, Akan P, Demir T, Bayraktar F, Yesil S (2008) Serum transforming growth factor-β 1 levels in normoalbuminuric and normotensive patients with type 2 diabetes. Effect of metformin and rosiglitazone. Hormones (Athens) 7:70–78

    Article  Google Scholar 

  • Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H (1999) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 129:1705–1712

    CAS  PubMed  Google Scholar 

  • Zhang T, He J, Xu C, Zu L, Jiang H, Pu S, Guo X, Xu G (2009) Mechanisms of metformin inhibiting lipolytic response to isoproterenol in primary rat adipocytes. J Mol Endocrinol 42:57–66

    Article  PubMed  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Sen X, Fenyk-Melody J, Wu M et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Lau-Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pandya, K.G., Budhram, R., Clark, G.J., Lau-Cam, C.A. (2015). Taurine Can Enhance the Protective Actions of Metformin Against Diabetes-Induced Alterations Adversely Affecting Renal Function. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_20

Download citation

Publish with us

Policies and ethics