Skip to main content

Models and Applications

  • Chapter
  • First Online:
Multicomponent and Multiscale Systems
  • 807 Accesses

Abstract

In this section, we discuss the different multicomponent and multiscale models , which are later applied in simulations. We focus on the coupling of microscopic and macroscopic models, while the microscopic model is related on finer spatial and time scales and the macroscopic model is related to the coarser spatial and time scales. We discuss exemplary engineering problems in the field of electronic application and transport reaction applications in Plasma models. Here, the models and their underlying multiscale and multicomponent methods are discussed. Based on the aligned methods, we see the data flow between the disparate scales and can estimate the accuracy in each micro- and macroscopic model, such that we obtained truly working multiscale and multicomponent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Weinan, Principle of Multiscale Modelling (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  2. J. Geiser, in Coupled Systems: Theory, Models and Applications in Engineering. Numerical Analysis and Scientific Computing Series, ed. by F. Magoules, C.H. Lai (CRC Press, Chapman & Hall/CRC, 2014)

    Google Scholar 

  3. J. Geiser, Operator splitting method for coupled problems: transport and Maxwell equations. Am. J. Comput. Math. Sci. Res. Publ. USA 1, 163–175 (2011)

    Article  Google Scholar 

  4. H. Kim, Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-systems. Springer Theses (Springer, Heidelberg, 2011)

    Google Scholar 

  5. J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J.L. Zimmermann, T. Shimizu, S. Karrer, Plasma medicine: possible applications in dermatology. JDDG, J. Ger. Soc. Dermatol. (2010). ISSN 1610-0379

    Google Scholar 

  6. J. Liebmann, J. Scherer, N. Bibinov, P. Rajasekaran, R. Kovacs, R. Gesche, P. Awakowicz, V. Kolb-Bachofen, Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells. Nitric Oxide 24(1), 8–16 (2011)

    Google Scholar 

  7. K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker, Non-Equilibrium Air Plasmas at Atmospheric Pressure. Series in Plasma Physics (Taylor and Francis, London, 2004)

    Google Scholar 

  8. J. Meichsner, M. Schmidt, R. Schneider, H.-E. Wagner, Nonthermal Plasma Chemistry and Physics (CRC Press, Taylor and Francis, Boca Raton, 2012)

    Google Scholar 

  9. T.K. Senega, R.P. Brinkmann, Generalized transport coefficients of multicomponent low-temperature plasmas. IEEE Trans. Plasma Sci. 35(5), 1196–1203 (2007)

    Article  Google Scholar 

  10. T.K. Senega, Schwerteilchen-Transport in Niedertemperatur-Plasmen: Modellierung Technisch Relevanter Plasmen (Logos, Berlin, 2007)

    Google Scholar 

  11. W. Dobrygin, Modelling and Simulation of a Plasmajet. Diplomarbeit, Theoretische Elektrotechnik (Ruhr-Universität Bochum, 2014)

    Google Scholar 

  12. W. Dobrygin, J. Trischmann, T. Hemke, R.P. Brinkmann, Simulation und Modellierung der Strömungsdynamik eines nicht-thermischen Plasmajets in Atmosphärendruck. Vortrag, Theoretische Elektrotechnik (Ruhr-Universität Bochum, Bochum, 2014)

    Google Scholar 

  13. J. Schäfer, F. Sigeneger, R. Foest, D. Loffhagen, K.-D. Weltmann, On plasma parameters of a self-organized plasma jet at atmospheric pressure. Eur. Phys. J. D 60, 531–538 (2010)

    Article  Google Scholar 

  14. T.K. Senega, R.P. Brinkmann, A multi-component transport model for non-equilibrium low-temperature low-pressure plasmas. J. Phys. D: Appl. Phys. 39, 1606–1618 (2006)

    Article  Google Scholar 

  15. K.-H. Spatschek, Theoretische Plasmaphysik (Teubner Studienbücher, 1990)

    Google Scholar 

  16. D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion. Parabol. Probl. Progr. Nonlinear Differ. Equ. Appl. 80, 81–93 (2011)

    MathSciNet  Google Scholar 

  17. J.A. Wesselingh, R. Krishna, Mass Transfer in Multicomponent Mixtures. VSSD, 1st edn. (Delft, The Netherland, 2000–2006)

    Google Scholar 

  18. K. Böttcher, Numerical solution of a multi-component species transport problem combining diffusion and fluid flow as engineering benchmark. Int. J. Heat Mass Transf. 53, 231–240 (2010)

    Article  MATH  Google Scholar 

  19. M. Herberg, M. Meyries, J. Prüss, M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics. Preprint, eprint arXiv:1310.4723 (2013)

  20. J. Geiser, in Iterative Splitting Methods for Differential Equations. Numerical Analysis and Scientific Computing Series, ed. by F. Magoules, C.H. Lai (Chapman & Hall/CRC, 2011)

    Google Scholar 

  21. J. Geiser, in Modelling and Simulation in Engineering with Multi-physics and Multiscale Methods: Theory and Application. Numerical Analysis and Scientific Computing Series, ed. by F. Magoules, C.H. Lai (Chapman & Hall/CRC, 2014)

    Google Scholar 

  22. D. Fang, M. Hieber, R. Zi, Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters. Mathematische Annalen 357(2), 687–709 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, Basel, 1999)

    Book  MATH  Google Scholar 

  24. R. Krishna, R. Taylor, Multicomponent mass transfer theory and applications, in Handbook for Heat and Mass Transfer, vol. 2, Chap. 7, ed. by N. Cheremisinoff (Gulf, Houston, 1986)

    Google Scholar 

  25. R. Krishna, J. Wesselingh, The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861911 (1997)

    Article  Google Scholar 

  26. J. Bear, Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media (Kluwer Academic Publishers, Dordrecht, 1991)

    Book  MATH  Google Scholar 

  27. D.J. Acheson, Elementary Fluid Dynamics. Oxford Applied Mathematics & Computing Science Series (2002)

    Google Scholar 

  28. R. Balescu, Transport Processes in Plasma: Classical Transport, vol. 1 (North Holland Publishing, Amsterdam, 1988)

    Google Scholar 

  29. B.V. Alexeev, Generalized Boltzmann Physical Kinetics, 1st edn. (Elsevier Science, Amsterdam, 2004)

    Google Scholar 

  30. M.A. Lieberman, A.J. Lichtenberg, Principle of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

  31. K.N. Kulkarni, Multicomponent diffusion in ternary and quaternary diffusion couples and in multilayered assemblies. Ph.D. thesis, Purdue University, 2008

    Google Scholar 

  32. A. Spille-Kohoff, E. Preus, K. Böttcher, Numerical solution of multi-component species transport in gases at any total number of components. Int. J. Heat Mass Transf. 55, 5373–5377 (2012)

    Google Scholar 

  33. J. Bear, Dynamics of Fluids in Porous Media (American Elsevier, New York, 1972)

    MATH  Google Scholar 

  34. J. Geiser, Discretization and Simulation of Systems for Convection-Diffusion-Dispersion Reactions with Applications in Groundwater Contamination. Monograph, Series: Groundwater Modelling, Management and Contamination (Nova Science Publishers, Inc., New York, 2008)

    Google Scholar 

  35. R.E. Ewing, Up-scaling of biological processes and multiphase flow in porous media. IIMA Volumes in Mathematics and its Applications, vol. 295 (Springer, New York, 2002), pp. 195–215

    Google Scholar 

  36. E. Fein, Software package \(r^3t\): model for transport and retention in porous media. Final report, GRS-192, Braunschweig (2004)

    Google Scholar 

  37. M. Genuchten, Convective-dispersive transport of solutes involved in sequential first-order decay reactions. Comput. Geosci. 11(2), 129–147 (1985)

    Article  Google Scholar 

  38. S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods. Text in Applied Mathematics, vol. 45 (Springer, Heidelberg, 2003)

    Google Scholar 

  39. P. Knabner, L. Angerman, Numerical Methods for Elliptic and Parabolic Partial Differential Equations: An Applications-oriented Introduction. Texts in Applied Mathematics (Springer, Heidelberg, 2003)

    Google Scholar 

  40. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  41. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor and Francis, 1980)

    Google Scholar 

  42. J. Geiser, Discretization methods with analytical solutions for convection-diffusion dispersion-reaction equations and applications. J. Eng. Math. 57(1), 79–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Geiser, Iterative operator-splitting methods with higher order time-integration methods and applications for parabolic partial differential equations. J. Comput. Appl. Math. Elsevier, Amsterdam, The Netherlands 217, 227–242 (2008)

    MathSciNet  MATH  Google Scholar 

  44. J. Geiser, Recent advances in splitting methods for multiphysics and multiscale: theory and applications. J. Algorithms Comput. Technol. Multi-Sci. Brentwood, Essex, UK, accepted August 2014 (to be published second issue 2015)

    Google Scholar 

  45. K. Nanbu, Theory of cumulative small-angle collisions in plasmas. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 55(4), 4642–4652 (1997)

    Google Scholar 

  46. B.I. Cohen, L. Divol, A.B. Langdon, E.A. Williams, Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering. Phys. Plasmas 13(2), 022705 (2006)

    Article  Google Scholar 

  47. B.I. Cohen, A.M. Dimits, A. Friedman, R.E. Caflisch, Time-step considerations in particle simulation algorithms for coulomb collisions in plasmas. IEEE Trans. Plasma Sci. 38(9), 2394–2406 (2010)

    Article  Google Scholar 

  48. P. Vabishchevich, Additive Operator-difference Schemes: Splitting Schemes (De Gruyter, Berlin, 2014)

    Google Scholar 

  49. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)

    Google Scholar 

  50. Y. Yang, R.S. Chen, E.K.N. Yung, The unconditionally stable Crank Nicolson FDTD method for three-dimensional Maxwell’s equations. Microw. Opt. Technol. Lett. 48(8), 1619–1622 (2006)

    Article  Google Scholar 

  51. J. Shibayama, M. Muraki, J. Yamauchi, H. Nakano, Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electron. Lett. 41(19) (2005)

    Google Scholar 

  52. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House Inc., Boston, 1995)

    MATH  Google Scholar 

  53. R.I. McLachlan, G.R.W. Quispel, Splitting methods. Acta Numerica 341–434 (2002)

    Google Scholar 

  54. R. Hockney, J. Eastwood, Computer Simulation Using Particles (CRC Press, 1985)

    Google Scholar 

  55. J. Duras, K. Matyash, D. Tskhakaya, O. Kalentev, R. Schneider, Self-force in 1D electrostatic particle-in-cell codes for non-equidistant grids. Contrib. Plasma Phys. 54(8), 697–711 (2014)

    Article  Google Scholar 

  56. K. Lueskow, J. Duras, O. Kalentev, K. Matyash, J. Geiser, R. Schneider, D. Tskhakaya. Non-equidistant particle-in-cell for ion thruster plumes, in Proceedings of the 33rd IEPC, October, 2013, Washington, DC, USA, IEPC-2013-067 (2013)

    Google Scholar 

  57. D. Tskhakaya, K. Matyash, R. Schneider, F. Taccogna, The particle-in-cell method. Contrib. Plasma Phys. 47(8–9), 563–594 (2007)

    Article  Google Scholar 

  58. O. Kalentev, K. Matyash, J. Duras, K. Lueskow, R. Schneider, N. Koch, M. Schirra, Electrostatic ion thrusters—towards predictive modeling. Contrib. Plasma Phys. 54(2), 235–248 (2014)

    Article  Google Scholar 

  59. F.H. Harlow, The particle-in-cell method for numerical solution of problems in fluid dynamics. Methods Comput. Phys. 319–343 (1964)

    Google Scholar 

  60. P. Colella, M.R. Dorr, J.A.F. Hittinger, D.F. Martin, High-order, finite-volume methods in mapped coordinates. J. Comput. Phys. 230(8), 2952–2976 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Patacchini, I.H. Hutchinson, Explicit time-reversible orbit integration in particle in cell codes with static homogeneous magnetic field. J. Comput. Phys. 228(7), 2604–2615 (2009)

    Article  MATH  Google Scholar 

  62. G. Lapenta, DEMOCRITUS: an adaptive particle in cell (PIC) code for object-plasma interactions. J. Comput. Phys. 230(12), 4679–4695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. J. Geiser, M. Arab, Modelling, optimzation and simulation for a chemical vapor deposition. J. Porous Media, Begell House Inc., Redding, USA 12(9), 847–867 (2009)

    Article  Google Scholar 

  64. B. Gustafsson, High Order Difference Methods for Time dependent PDE. Springer Series in Computational Mathematics, vol. 38 (Springer, Heidelberg, 2007)

    Google Scholar 

  65. G.H. Shortly, R. Weller, Numerical solutions of Laplace’s equation. J. Appl. Phys. 9, 334–348 (1938)

    Google Scholar 

  66. Chr. Grossmann, H.G. Roos, M. Stynes, Numerical Treatment of Partial Differential Equations. Universitext, 1st edn. (Springer, New York, 2007)

    Google Scholar 

  67. F. Taccogna, S. Longo, M. Capitelli et al., Particle-in-cell simulation of stationary plasma thruster. Contrib. Plasma Phys. 47(8–9), 635–656 (2007)

    Article  Google Scholar 

  68. Maxima verison 5.26.0. Maxima: A Computer Algebra System. Online software resource: http://maxima.sourceforge.net/ (2011)

  69. I.P. Omelyana, I.M. Mrygloda, R. Folk, Optimized Forest-Ruth- and Suzuki-like algorithms for integration of motion in many-body systems. Comput. Phys. Commun. 146(2), 188–202 (2002)

    Article  Google Scholar 

  70. E. Forest, R.D. Ruth, Fourth-order symplectic integration. Phys. D: Nonlinear Phenom. 43(1), 105–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  71. S.A. Chin, J. Geiser, Multi-product operator splitting as a general method of solving autonomous and non-autonomous equations. IMA J. Numer. Anal. 31(4), 1552–1577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. P. Colella, P.C. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC. J. Comput. Phys. 229, 947–957 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  73. K. Matyash, O. Kalentev, R. Schneider, Kinetic simulation of the stationary HEMP thruster including the near-field plume region, in Presented at the 31st International Electric Populsion Conference (IEPC), IEPC-2009-110 (2009)

    Google Scholar 

  74. J. Geiser, F. Riedel, Comparison of integrators for electromagnetic particle in cell methods: algorithms and applications, in Proceedings, arXiv:1411.0816, November 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Geiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geiser, J. (2016). Models and Applications. In: Multicomponent and Multiscale Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-15117-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15117-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15116-8

  • Online ISBN: 978-3-319-15117-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics