Skip to main content

Managing Hybrid Model Composition Complexity: Human–Environment Simulation Models

  • Chapter
Concepts and Methodologies for Modeling and Simulation

Abstract

Multimodeling approaches are increasingly required for simulating multifaceted systems across many scientific disciplines. Such approaches represent the system as a set of subsystem models, each with its own structure and behavior. Some multimodeling approaches use modeling methods to define how the subsystem structures and behaviors interact. However, modeling a system this way brings about subsystem and composition complexity that must be managed. The complexities of hybrid models resulting from the interactions of the composed models can be reduced using interaction models. Independently developing and utilizing such interaction models provides additional flexibility in system model design, modification, and execution for both the subsystem models and the resultant hybrid system model. This chapter discusses the use of the polyformalism model composition approach for researching human–environment dynamics with direct support for managing the complexity, which results from subsystem model interactions within this domain.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-15096-3_16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIMS (2009) DEVS-Suite simulator. Retrieved from http://devs-suitesim.sourceforge.net/

  • Anderson JA (2006) Automata theory with modern applications. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Arrowsmith J, DiMaggio E, Barton C, Sarjoughian H, Fall P, Falconer S, Ullah I (2006) Geomorphic mapping and paleoterrain generation for use in modeling holocene (8,000 1,500 yr) agropastoral landuse and landscape interactions in Southeast Spain. AGU Fall Meet Abstr 1:0453

    Google Scholar 

  • Bajracharya K, Duboz R (2013) Comparison of three agent-based platforms on the basis of a simple epidemiological model. In: Proceedings of the symposium on theory of modeling & simulation – DEVS Integrative M&S symposium, Society for Computer Simulation International, San Diego

    Google Scholar 

  • Barton CM, Bernabeu J, Aura JE, Garcia O, Schmich S, Molina L (2004) Long-term socioecology andcontingent landscapes. J Archaeol Method Theory 11(3):253–295

    Article  Google Scholar 

  • Barton CM, Ullah II, Bergin S, Mitasova H, Sarjoughian HS (2012) Looking for the future in the past: Long-term change in socioecological systems. Ecol Model 241:42–53

    Article  Google Scholar 

  • Booch G, Young B (2006) Object oriented analysis & design with application. Pearson Education India

    Google Scholar 

  • Booch G, Maksimchuk R, Engle M, Young B, Conallen J, Houston K (2007) Object-oriented analysis and design with applications, 3rd edn. Addison-Wesley Professional, Reading

    Google Scholar 

  • Braun J, Heimsath AM, Chappell J (2001) Sediment transport mechanisms on soil-mantled hillslopes. Geology 29(8):683–686

    Article  Google Scholar 

  • Bryson, R.A. and K. McEnaney-DeWall (eds), (2007). A Paleoclimatology Workbook: High Resolution, Site-Specific, Macrophysical Climate Modeling & Template CD. Mammoth Site of Hot Springs, SD, Hot Springs, SD. CCR #930

    Google Scholar 

  • Cicirelli F, Furfaro A, Nigro L, Pupo F (2013) Agent methodological layers in repast simphony. Proceedings of the 27th European Conference on Modelling and Simulation, ECMS 2013, Ålesund, Norway

    Google Scholar 

  • Cowgill GL (1975) On causes and consequences of ancient and modern population changes. Am Anthropol 77(3):505–525

    Article  Google Scholar 

  • Davis PK, Anderson RH (2004) Improving the composability of DoD models and simulations. J Def Model Simul Appl Methodol Technol 1(1):5–17

    Google Scholar 

  • Dietrich WE, Bellugi DG, Sklar LS, Stock JD, Heimsath AM, Roering JJ (2003) Geomorphic transport laws for predicting landscape form and dynamics. Geophys Monogr 135:103–132

    Google Scholar 

  • Epstein JM, Axtell RL (1996) Growing artificial societies – social science from the bottom up (Vol. Washington: Brookings Institution Press). MIT Press, Cambridge

    Google Scholar 

  • Fishwick PA (1995) Simulation model design and execution: building digital worlds. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  • Godding G, Sarjoughian HS, Kempf KG (2007) Application of combined discrete-event simulation and optimization models in semiconductor enterprise manufacturing systems. In: Proceedings of the 39th conference on Winter simulation conference, pp 1729–1736

    Google Scholar 

  • GRASS (2014) Geographic resources analysis support system. Retrieved from http://grass.itc.it/

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Rossmanith E (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 2(1):115–126

    Article  Google Scholar 

  • Hall S (2005) Learning in a complex adaptive system for ISR resource management. In: Spring simulation multi-conference. Society of Computer Simulation International, pp 5–12, San Diego, CA.

    Google Scholar 

  • Hancock GR (2004) Modelling soil erosion on the catchment and landscape scale using landscape evolution models a probabilistic approach using digital elevation model error. In: 3rd Australian New Zealand soils conference, University of Sydney, Australia

    Google Scholar 

  • Howe T, Diggory M (2003) A topological approach toward agent relation. In: Proceedings of the agent 2003 conference on challenges in social simulations, Chicago

    Google Scholar 

  • Huang D (2008) Composable modeling and distributed simulation framework for discrete supply-Chain systems with predictive control. Arizona State University, Tempe

    Google Scholar 

  • Huang D, Sarjoughian H, Wang W, Godding G, Rivera D, Kempf K, Mittelmann H (2009) Simulation of semiconductor manufacturing supply-Chain systems with DEVS, MPC, and KIB. IEEE Trans Semicond Manuf 22(1):164–174

    Article  Google Scholar 

  • IEEE Std 1516-2010 (2010) IEEE standard for modeling and simulation’s high level architecture (HLA)-framework and rules. IEEE Press

    Google Scholar 

  • Karsai G, Maroti M, Ledeczi A, Gray J, Sztipanovits J (2004) Composition and cloning in modeling and meta-modeling. IEEE Trans Control Syst Technol 12(2):263–278

    Article  Google Scholar 

  • Kim S, Sarjoughian HS, Elamvazhuthi V (2009) DEVS-suite: a simulator supporting visual experimentation design and behavior monitoring. In: Proceedings of the 2009 Spring simulation multiconference, high performance computing & simulation symposium, San Diego

    Google Scholar 

  • Kincaid CA, Mohanty SP, Mikler AR, Kougianos E, Parker B (2006) A high performance ASIC for cellular automata (CA) applications. International conference on information technology, Los Alamitos

    Google Scholar 

  • Kirschner DE, Hunt CA, Marino S, Fallahi-Sichani M, Linderman JJ (2014) Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models. Wiley Interdiscip Rev Syst Biol Med 6(4):225–245

    Google Scholar 

  • Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) Mason: a multi-agent simulation environment. Simul Trans Soc Model Simul Int 82(7):517–527

    Article  Google Scholar 

  • Lytinen SL, Railsback SF (2012) The evolution of agent-based simulation platforms: a review of NetLogo 5.0 and ReLogo. In: Proceedings of the fourth international symposium on agent-based modeling and simulation

    Google Scholar 

  • Manson S (2001) Simplifying complexity: a review of complexity theory. Geoforum 32:405–414

    Article  Google Scholar 

  • Mayer GR (2009) Composing hybrid discrete event system and cellular automata models. Arizona State University, Tempe

    Google Scholar 

  • Mayer GR, Sarjoughian HS (2008) A composable discrete-time cellular automaton formalism. First workshop on social computing, behavioral modeling, and prediction. Phoenix, pp 187–196

    Google Scholar 

  • Mayer GR, Sarjoughian HS (2009) Composable cellular automata. Trans Soc Model Simul Int 11–12:735–749

    Article  Google Scholar 

  • Mayer GR, Sarjoughian HS, Allen EK, Falconer S, Barton M (2006) Simulation modeling for human community and agricultural landuse. Spring simulation multi-conference, Huntsville, AL

    Google Scholar 

  • MedLand (2014) Landuse and landscape socioecology in the mediterranean basin: a natural laboratory for the study. Tempe: https://shesc.asu.edu/medland/. Retrieved June 2014

  • Minar M, Burkhart R, Langton C, Askenazy M (1996) The Swarm simulation system: a toolkit for building multi-agent simulations. Santa Fe Institute, Santa Fe

    Google Scholar 

  • Mitasova H, Mitas L (1993) Interpolation by regularized splines with tension: I. theory and implementation. Math Geol 25:641–655

    Article  Google Scholar 

  • Mosterman PJ, Vangheluwe H (2004) Computer automated multi-paradigm modeling: an introduction. Simulation 80(9):433–450

    Article  Google Scholar 

  • Neteler M, Mitasova H (2004) Open source GIS: a GRASS GIS approach. 2nd edn, The Kluwer international series in Engineering and Computer Scienc: Volume 773. Kluwer Academic Publishers/Springer, Boston, MA

    Google Scholar 

  • North M, Howe T, Collier N, Vos J (2005) The repast symphony development environment. In: Proceedings of the agent 2005 conference on generative social processes, Argonne National Laboratory, Chicago, pp 159–166

    Google Scholar 

  • Ntaimo L, Zeigler B, Vasconcelos M, Khargharia B (2004) Forest fire spread and suppression in DEVS. Trans Soc Model Simul Int 80(10):479–500

    Article  Google Scholar 

  • Ören TI (2014) Coupling concepts for simulation: a systematic and comprehensive view and advantages with declarative models. Int J Model Simul Sci Comput 5(2):1–17

    Article  Google Scholar 

  • Ören TI, Yilmaz L (2009) Agent-directed simulation and systems engineering and management. (Ören TI, Yilmaz L eds) Wiley series in systems engineering, Wiley-VCH, Berlin, Germany

    Google Scholar 

  • Ören TI, Zeigler BP (2012) System theoretic foundations of modeling and simulation: a historic perspective and the legacy of. A Wayne Wymore 88(9):1033–1046

    Google Scholar 

  • Pardo F, Gil L (2005) The impact of traditional land use on woodlands: a case study in the spanish central systems. Hist Geogr 31(3):390–408

    Article  Google Scholar 

  • Parker D, Manson S, Janssen M, Hoffmann M, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337

    Article  Google Scholar 

  • Praehofer H (1991) System theoretic formalisms for combined discrete-continuous system simulation. Int J Gen Syst 19(3):226–240

    Article  Google Scholar 

  • Ptolemaeus C (2014) System design, modeling, and simulation using Ptolemy II. www.ptolemy.org

  • Rand W, Brown D, Riolo R, Robinson D (2005) Toward a graphical ABM toolkit with GIS integration. In: Proceedings of the agent 2005 conference on generative social processes, models, and mechanisms, Chicago, Illinois

    Google Scholar 

  • Sadras V, Calvino P (2001) Quantification of grain yield response to soil depth in soybean, maize, sunflower, and wheat. Agronomy 93:577–583

    Article  Google Scholar 

  • Sarjoughian HS (2006) Model composability. In: Proceedings of the 38th conference on Winter simulation conference, pp 149–158, Monterey, California

    Google Scholar 

  • Sarjoughian HS, Huang D (2005) A multi-formalism modeling composability framework: agent and discrete-event models. Ninth IEEE international symposium on distributed simulation and real-time applications, Washington, DC

    Google Scholar 

  • Sarjoughian HS, Markid AM (2012) EMF-DEVS modeling. Symposium on theory of modeling and simulation – DEVS integrative M&S symposium, Orlando

    Google Scholar 

  • Sarjoughian HS, Zeigler BP (2000) DEVS and HLA: complementary paradigms for modeling and simulation? Trans Soc Model Simul Int 17(4):187–197

    Google Scholar 

  • Sarjoughian HS, Smith J, Godding G, Muqsith M (2013) Model composability and execution across simulation, optimization, and forecast models. In: 3rd international workshop on model-driven approaches for simulation engineering, SpringSim multi-conference, San Diego

    Google Scholar 

  • Simms SR, Russell KW (1997) Bedouin hand harvesting of wheat and barley: implications for early cultivation in southwestern Asia. Curr Anthropol 38(4):696–702

    Article  Google Scholar 

  • Soto M, Fall P, Barton CM, Falconer S, Sarjoughian HS, Arrowsmith R (2007) Land cover change in the southern levant: 1973 to 2003. ASPRS Southwest technical conference, Arizona State University, Tempe, AZ

    Google Scholar 

  • Thomson EF, Bahhady F, Termanini A, Mokrebel M (1985) Availability of home-produced wheat, milk products and meat to sheep-owning families at the cultivated margin of the NW Syrian steppe. Ecol Food Nutr 19:113–121

    Article  Google Scholar 

  • Tisue S, Wilensky U (2004) Netlogo: design and implementation of a multi-agent modeling environment. In: Proceedings of the agent 2004, Chicago, Illinois

    Google Scholar 

  • Ullah II (2012) The consequences of human landuse strategies during the PPNB-LN transition: a simulation modeling approach. Arizona State University, Tempe

    Google Scholar 

  • Ullah II, Mayer GR, Barton CM, Sarjoughian HS, DiMaggio E (2008) Ancient mediterranean landscape dynamics: hybrid agent and goespatial models as a new approach to socioecological simulation. Society for American archaeology symposium, Vancouver, Canada

    Google Scholar 

  • Vasconcelos MD, Zeigler BP (1993) Modeling multi-scale spatial ecological processes under the discrete event systems paradigm. Landsc Ecol 8(4):273–286

    Article  Google Scholar 

  • Wainer G (2006) Applying Cell-DEVS methodology for modeling the environment. Trans Soc Model Simul Int 82(10):635–660

    Article  Google Scholar 

  • Warren SD, Mitasova H, Hohmann MG, Landsberger S, Skander FY, Ruzycki TS, Senseman G (2005) Validation of a 3-d enhancement of the universal soil loss equation for preediction of soil erosion and sediment deposition. Catena 64:281–296

    Article  Google Scholar 

  • Willgoose G (2005) Mathematical modeling of whole landscape evolution. Annu Rev Earth Planet Sci 33(1):443–459

    Article  MathSciNet  Google Scholar 

  • Wood J, Cowgill GL, Dewar RE, Howell N, Konigsberg LW, Littleton JH, Swedlund AC (1998) A theory of preindustrial population dynamics: demography, economy, and well-being in malthusian systems [and comments and reply]. Curr Anthropol 39(1):99–135

    Article  Google Scholar 

  • Wymore AW (1993) Model-based systems engineering: an introduction to the mathematical theory of discrete systems and to the tricotyledon theory of system design, vol 3. CRC press

    Google Scholar 

  • Zeigler BP, Praehofer H, Kim TG (2000) Theory of modeling and simulation, 2nd ed. Academic Press, Inc., Orlando, FL, USA.

    Google Scholar 

Download references

Acknowledgments

This research is supported by National Science Foundation grant #BCS-0140269 and #DEB-1313727. We would like to thank the entire MedLand team for their help and partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hessam S. Sarjoughian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarjoughian, H.S., Mayer, G.R., Ullah, I.I., Barton, C.M. (2015). Managing Hybrid Model Composition Complexity: Human–Environment Simulation Models. In: Yilmaz, L. (eds) Concepts and Methodologies for Modeling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-15096-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15096-3_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15095-6

  • Online ISBN: 978-3-319-15096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics