Skip to main content

Finslerian Diffusion and the Bloch–Torrey Equation

  • Conference paper
  • 1367 Accesses

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

By analyzing stochastic processes on a Riemannian manifold, in particular Brownian motion, one can deduce the metric structure of the space. This fact is implicitly used in diffusion tensor imaging of the brain when cast into a Riemannian framework. When modeling the brain white matter as a Riemannian manifold one finds (under some provisions) that the metric tensor is proportional to the inverse of the diffusion tensor, and this opens up a range of geometric analysis techniques. Unfortunately a number of these methods have limited applicability, as the Riemannian framework is not rich enough to capture key aspects of the tissue structure, such as fiber crossings.An extension of the Riemannian framework to the more general Finsler manifolds has been proposed in the literature as a possible alternative. The main contribution of this work is the conclusion that simply considering Brownian motion on the Finsler base manifold does not reproduce the signal model proposed in the Finslerian framework, nor lead to a model that allows the extraction of the Finslerian metric structure from the signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We only consider reversible Finsler functions, meaning that for all \((\mathbf{x},\mathbf{y}) \in \mathit{TM}\), we have \(F(\mathbf{x},-\mathbf{y}) = F(\mathbf{x},\mathbf{y})\).

  2. 2.

    Different gradient sequences can be used to find the coefficients {D ij}, based on modified (but similar) versions of Eq. (8).

  3. 3.

    In conformity with diffusion MRI literature we omit the diacritical mark above the covectors \(\mathbf{q}\) and \(\mathbf{G}\).

  4. 4.

    There are two diffusion MRI models called generalized DTI, one by Özarslan et al. [34] and one by Liu et al. [27]. Whenever we refer to GDTI we mean the former.

  5. 5.

    Since we only report results of a single experiment we provide only the b-value. A more extensive analysis should consider the influence of the different parameters δ, Δ, and \(\|\mathbf{G}\|\) separately.

References

  1. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010). doi:10.1002/mrm.22365

    MATH  Google Scholar 

  2. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888 (2003). doi:10.1016/S1053-8119(03)00336-7

    Google Scholar 

  3. Antonelli, P.L., Zastawniak, T.J.: Fundamentals of Finslerian Diffusion with Applications. Springer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  4. Assaf, Y., Basser, P.J.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005). doi:10.1016/j.neuroimage.2005.03.042

    Article  Google Scholar 

  5. Assaf, Y., Cohen, Y.: Non-mono-exponential attenuation of water and n-acetyl aspartate signals due to diffusion in brain tissue. J. Magn. Reson. 131(1), 69–85 (1998)

    Article  Google Scholar 

  6. Astola, L.J., Florack, L.M.J.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. Int. J. Comput. Vis. 92(3), 325–336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, D., Lackey, B.C.: A Hodge decomposition theorem for Finsler spaces. Comptes Rendus de l’Académie des Sciences. Série 1, Mathématique 323(1), 51–56 (1996)

    Google Scholar 

  8. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000)

    Book  Google Scholar 

  9. Barthelmé, T.: A natural Finsler-laplace operator. Isr. J. Math. 196(1), 375–412 (2013)

    Article  MATH  Google Scholar 

  10. Basser, P.J., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994). doi:10.1006/jmrb.1994.1037

    Article  Google Scholar 

  11. Centore, P.: A mean-value Laplacian for Finsler spaces. In: Antonelli, P.L., Lackey, B.C. (eds.) The Theory of Finslerian Laplacians and Applications. Mathematics and Its Applications, vol. 459, pp. 151–186. Springer, Netherlands (1998)

    Chapter  Google Scholar 

  12. de Lara, M.C.: Geometric and symmetry properties of a nondegenerate diffusion process. Ann. Probab. 23(4), 1557–1604 (1995). doi:10.1214/aop/1176987794

    Google Scholar 

  13. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322(8), 549–560 (1905). doi:10.1002/andp.19053220806

    Article  Google Scholar 

  14. Fletcher, P.T., Tao, R., Jeong, W.K., Whitaker, R.T.: A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. In: Information Processing in Medical Imaging, pp. 346–358. Springer, Berlin (2007)

    Google Scholar 

  15. Florack, L.M.J., Fuster, A.: Riemann-finsler geometry for diffusion weighted magnetic resonance imaging. In: Westin, C.F., Vilanova, A., Burgeth B. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, pp. 189–208. vol. XV. Springer (2014, to appear)

    Google Scholar 

  16. Fuster, A., Astola, L., Florack, L.: A Riemannian scalar measure for diffusion tensor images. In: Computer Analysis of Images and Patterns, pp. 419–426. Springer, Berlin (2009)

    Google Scholar 

  17. Fuster, A., Tristan-Vega, A., Dela Haije, T.C.J., Westin, C.F., Florack, L.M.J.: A novel Riemannian metric for geodesic tractography in DTI. In: CDMRI, Nagoya, pp. 47–54 (2013)

    Google Scholar 

  18. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013). doi:10.1016/j.neuroimage.2013.04.127

    Google Scholar 

  19. Haacke, E.M.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, New York (1999)

    Google Scholar 

  20. Hao, X., Whitaker, R., Fletcher, P.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Information Processing in Medical Imaging, pp. 13–24. Springer, Heidelberg (2011)

    Google Scholar 

  21. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005). doi:10.1002/mrm.20508

    Google Scholar 

  22. Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging: prevalence of multifiber voxels in WM. Hum. Brain Mapp. 34(11), 2747–2766 (2013). doi:10.1002/hbm.22099

    Google Scholar 

  23. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2005)

    Google Scholar 

  24. Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: application to connectivity mapping. In: Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos D., Tygar, D., Vardi, M.Y., Weikum, G., Pajdla, T., Matas, J. (eds.) Computer Vision -ECCV 2004, vol. 3024, pp. 127–140. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  25. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O., Lehericy, S., Ugurbil, K.: A Riemannian approach to diffusion tensor images segmentation. In: Information Processing in Medical Imaging, pp. 591–602. Springer, Heidelberg (2005)

    Google Scholar 

  26. Lewis, J.C.: Elementary statistical models for vector collision-sequence interference effects with Poisson-distributed collision times. Int. J. Spectrosc. 2010, 1–5 (2010). doi:10.1155/2010/561697

    Google Scholar 

  27. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51(5), 924–937 (2004). doi:10.1002/mrm.20071

    Google Scholar 

  28. Liu, C., Bammer, R., Moseley, M.E.: Limitations of apparent diffusion coefficient-based models in characterizing non-gaussian diffusion. Magn. Reson. Med. 54(2), 419–428 (2005). doi:10.1002/mrm.20579

    Google Scholar 

  29. Melonakos, J., Mohan, V., Niethammer, M., Smith, K., Kubicki, M., Tannenbaum, A.: Finsler tractography for white matter connectivity analysis of the cingulum bundle. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007, pp. 36–43. Springer, Heidelberg (2007)

    Google Scholar 

  30. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008). doi:10.1109/TPAMI.2007.70713

    Google Scholar 

  31. Novikov, D.S., Kiselev, V.G.: Effective medium theory of a diffusion-weighted signal. NMR Biomed. 23(7), 682–697 (2010). doi:10.1002/nbm.1584

    Google Scholar 

  32. O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002, vol. 2488, pp. 459–466. Springer, Berlin/Heidelberg (2002)

    Google Scholar 

  33. Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin/New York (2003)

    Google Scholar 

  34. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Google Scholar 

  35. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Fiber orientation mapping using generalized diffusion tensor imaging. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1036–1039 (2004)

    Google Scholar 

  36. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3), 1086–1103 (2006). doi:10.1016/j.neuroimage.2006.01.024

    Google Scholar 

  37. Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013). doi:10.1016/j.neuroimage.2013.04.016

    Google Scholar 

  38. Pinsky, M.A.: Isotropic transport process on a Riemannian manifold. Trans. Am. Math. Soc. 218, 353–360 (1976)

    Google Scholar 

  39. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Van Essen, D.C., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage 80, 125–143 (2013). doi:10.1016/j.neuroimage.2013.05.057

    Google Scholar 

  40. Sotiropoulos, S.N., Moeller, S., Jbabdi, S., Xu, J., Andersson, J.L., Auerbach, E.J., Yacoub, E., Feinberg, D., Setsompop, K., Wald, L.L., Behrens, T.E.J., Ugurbil, K., Lenglet, C.: Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using sense: effects of dMRI image reconstruction on fiber orientations. Magn. Reson. Med. 70(6), 1682–1689 (2013). doi:10.1002/mrm.24623

    Google Scholar 

  41. Torrey, H.C.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563 (1956)

    Google Scholar 

  42. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013). doi:10.1016/j.neuroimage.2013.05.041

    Google Scholar 

  43. Watanabe, T.: Weak convergence of the isotropic scattering transport process with one speed in the plane to Brownian motion. Proc. Jpn. Acad. 44(7), 677–680 (1968). doi:10.3792/pja/1195521091. MR: MR0236996 Zbl: 0177.45403

    Google Scholar 

  44. Watanabe, S., Watanabe, T.: Convergence of isotropic scattering transport process to Brownian motion. Nagoya Math. J. 40, 161–171 (1970)

    Google Scholar 

  45. Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., Dai, G., Pandya, D.N., Hagmann, P., D’Arceuil, H., de Crespigny, A.J.: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41(4), 1267–1277 (2008). doi:10.1016/j.neuroimage.2008.03.036

    Google Scholar 

Download references

Acknowledgements

Tom Dela Haije gratefully acknowledges The Netherlands Organisation for Scientific Research (NWO) for financial support. The authors would like to thank Thomas Schultz and Remco Duits for their input regarding the quadratic scaling assumption. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. J. Dela Haije .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dela Haije, T.C.J., Fuster, A., Florack, L.M.J. (2015). Finslerian Diffusion and the Bloch–Torrey Equation. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_2

Download citation

Publish with us

Policies and ethics