Skip to main content

Survey on Counting Special Types of Polynomials

  • Chapter
  • First Online:
Computer Algebra and Polynomials

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8942))

  • 1876 Accesses

Abstract

Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gauß count the remaining ones, approximately and exactly. For polynomials in two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. This survey presents counting results for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the \(s\)-powerful ones (divisible by the \(s\)th power of a nonconstant polynomial), the relatively irreducible ones (irreducible but reducible over an extension field), the decomposable ones, and also for reducible space curves. These come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size.

Furthermore, a univariate polynomial \(f\) is decomposable if \(f = g\,\circ \,h\) for some nonlinear polynomials \(g\) and \(h\). It is intuitively clear that the decomposable polynomials form a small minority among all polynomials.

The tame case, where the characteristic \(p\) of \({\mathbb {F}}_{q}\) does not divide \(n = \deg f\), is fairly well-understood, and we obtain closely matching upper and lower bounds on the number of decomposable polynomials. In the wild case, where \(p\) does divide \(n\), the bounds are less satisfactory, in particular when \(p\) is the smallest prime divisor of \(n\) and divides \(n\) exactly twice. The crux of the matter is to count the number of collisions, where essentially different \((g, h)\) yield the same \(f\). We present a classification of all collisions at degree \(n = p^{2}\) which yields an exact count of those decomposable polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseyev, M.: A115457–A115472. In: The On-Line Encyclopedia of Integer Sequences. OEIS Foundation Inc. (2006). http://oeis.org. Last download 4 Dec 2012

  • Artin, E.: Quadratische Körper im Gebiete der höheren Kongruenzen. II. (Analytischer Teil.). Math. Z. 19(1), 207–246 (1924). http://dx.doi.org/10.1007/BF01181075

  • Avanzi, R.M., Zannier, U.M.: The equation \(f(X)=f(Y)\) in rational functions \(X=X(t)\), \(Y=Y(t)\). Compositio Math. 139(3), 263–295 (2003). http://dx.doi.org/10.1023/B:COMP.0000018136.23898.65

  • Barton, D.R., Zippel, R.: Polynomial Decomposition Algorithms. J. Symbolic Comput. 1, 159–168 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Blankertz, R.: A polynomial time algorithm for computing all minimal decompositions of a polynomial. ACM Commun. Comput. Algebra 48(1, Issue 187), 13–23 (2014)

    Article  Google Scholar 

  • Blankertz, R., von zur Gathen, J., Ziegler, K.: Compositions and collisions at degree \(p^2\). J. Symbolic Comput. 59, 113–145 (2013). ISSN 0747-7171. http://dx.doi.org/10.1016/j.jsc.2013.06.001. http://arxiv.org/abs/1202.5810. Extended Abstract in: Proceedings of the 2012 International Symposium on Symbolic and Algebraic Computation, ISSAC 2012, Grenoble, France, pp. 91–98 (2012)

  • Bodin, A.: Number of irreducible polynomials in several variables over finite fields. Am. Math. Monthly 115(7), 653–660 (2008). ISSN 0002-9890

    MATH  MathSciNet  Google Scholar 

  • Bodin, A.: Generating series for irreducible polynomials over finite fields. Finite Fields Their Appl. 16(2), 116–125 (2010). http://dx.doi.org/10.1016/j.ffa.2009.11.002

    Article  MATH  MathSciNet  Google Scholar 

  • Bodin, A., Dèbes, P., Najib, S.: Indecomposable polynomials and their spectrum. Acta Arith. 139(1), 79–100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Cade, J.J.: A new public-key cipher which allows signatures. In: Proceedings of the 2nd SIAM Conference on Applied Linear Algebra. SIAM, Raleigh (1985)

    Google Scholar 

  • Car, M.: Théorèmes de densité dans \(\mathbb{F}_{q}[X]\). Acta Arith. 48, 145–165 (1987)

    MATH  MathSciNet  Google Scholar 

  • Carlitz, L.: The arithmetic of polynomials in a Galois field. Am. J. Math. 54, 39–50 (1932)

    Article  Google Scholar 

  • Carlitz, L.: The distribution of irreducible polynomials in several indeterminates. Ill. J. Math. 7, 371–375 (1963)

    MATH  Google Scholar 

  • Carlitz, L.: The distribution of irreducible polynomials in several indeterminates II. Can. J. Math. 17, 261–266 (1965)

    Article  MATH  Google Scholar 

  • Cesaratto, E., von zur Gathen, J., Matera, G.: The number of reducible space curves over a finite field. J. Number Theory 133, 1409–1434 (2013). http://dx.doi.org/10.1016/j.jnt.2012.08.027

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen, S.: The distribution of irreducible polynomials in several indeterminates over a finite field. Proc. Edinburgh Math. Soc. 16, 1–17 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen, S.: Some arithmetical functions in finite fields. Glasgow Math. Soc. 11, 21–36 (1969)

    Article  Google Scholar 

  • Cohen, S.D.: Reducibility of sub-linear polynomials over a finite field. Bull. Korean Math. Soc. 22, 53–56 (1985)

    MATH  MathSciNet  Google Scholar 

  • Cohen, S.D.: Exceptional polynomials and the reducibility of substitution polynomials. Enseign. Math. (2) 36(1–2), 53–65 (1990a). ISSN 0013-8584

    Google Scholar 

  • Cohen, S.D.: The factorable core of polynomials over finite fields. J. Australian Math. Soc. Ser. A 49(02), 309–318 (1990b). http://dx.doi.org/10.1017/S1446788700030585

  • Cohen, S.D., Matthews, R.W.: A class of exceptional polynomials. Trans. Am. Math. Soc. 345(2), 897–909 (1994). ISSN 0002-9947. http://www.jstor.org/stable/2155005

  • Coulter, R.S., Havas, G., Henderson, M.: On decomposition of sub-linearised polynomials. J. Australian Math. Soc. 76(3), 317–328 (2004). ISSN 1446-7887. http://dx.doi.org/10.1017/S1446788700009885

  • Dickson, L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Part I & Part II. Ann. Math. 11, 65–120, 161–183 (1897). http://www.jstor.org/stable/1967217, http://www.jstor.org/stable/1967224

  • Dorey, F., Whaples, G.: Prime and Composite Polynomials. J. Algebra 28, 88–101 (1974). http://dx.doi.org/10.1016/0021-8693(74)90023-4

  • Eisenbud, D., Harris, J.: The dimension of the Chow variety of curves. Compositio Math. 83(3), 291–310 (1992)

    MATH  MathSciNet  Google Scholar 

  • Engstrom, H.T.: Polynomial substitutions. Am. J. Math. 63, 249–255 (1941). http://www.jstor.org/stable/2371520

    Article  MathSciNet  Google Scholar 

  • Faugère, J.-C., Perret, L.: High Order Derivatives and Decomposition of Multivariate Polynomials. In: May, J.P. (ed.) Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation ISSAC ’09, Seoul, Korea, pp. 207–214. ACM Press (2009). http://dx.doi.org/10.1145/1576702.1576732. ISBN 978-1-60558-609-0. Extended Abstract in: Extended Abstracts of the Second Workshop on Mathematical Cryptology, WMC 2008, pp. 15–19 (2008)

  • Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40(1), 37–81 (2001). Meyer auf der Heide, F., Monien, B. (eds.) Extended Abstract in: Proceedings of the 23rd International Colloquium on Automata, Languages and Programming, ICALP 1996. LNCS, vol. 1099, pp. 232–243. Springer, Heidelberg (1996)

    Google Scholar 

  • Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 824 pp. Cambridge University Press, Cambridge (2009). ISBN 0521898064

    Google Scholar 

  • Fried, M.D., MacRae, R.E.: On the invariance of chains of fields. Ill. J. Math. 13, 165–171 (1969)

    MATH  MathSciNet  Google Scholar 

  • Gao, S., Lauder, A.G.B.: Hensel lifting and bivariate polynomial factorisation over finite fields. Math. Comput. 71(240), 1663–1676 (2002). http://dx.doi.org/10.1090/S0025-5718-01-01393-X

  • von zur Gathen, J.: Functional Decomposition of Polynomials: the Tame Case. J. Symbolic Comput. 9, 281–299 (1990a). http://dx.doi.org/10.1016/S0747-7171(08)80014-4. Extended Abstract in: Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles, CA (1987)

  • von zur Gathen, J.: Functional Decomposition of Polynomials: the Wild Case. J. Symbolic Comput. 10, 437–452 (1990b). http://dx.doi.org/10.1016/S0747-7171(08)80054-5

  • von zur Gathen, J.: Factorization and Decomposition of Polynomials. In: Mikhalev, A.V., Pilz, G.F. (eds.) The Concise Handbook of Algebra, pp. 159–161. Kluwer Academic Publishers, Dordrecht (2002). ISBN 0-7923-7072-4

    Google Scholar 

  • von zur Gathen, J.: Counting reducible and singular bivariate polynomials. Finite Fields Their Appl. 14(4), 944–978 (2008). http://dx.doi.org/10.1016/j.ffa.2008.05.005. Extended Abstract in: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC 2007, Waterloo, ON, Canada, pp. 369–376 (2007)

  • von zur Gathen, J.: Counting decomposable multivariate polynomials. Appl. Algebra Eng. Commun. Comput. 22(3), 165–185 (2011). http://dx.doi.org/10.1007/s00200-011-0141-9. Abstract in: Abstracts of the Ninth International Conference on Finite Fields and their Applications, pp. 21–22. Claude Shannon Institute, Dublin, July 2009. http://www.shannoninstitute.ie/fq9/AllFq9Abstracts.pdf

  • von zur Gathen, J.: Lower bounds for decomposable univariate wild polynomials. J. Symbolic Comput. 50, 409–430 (2013). http://dx.doi.org/10.1016/j.jsc.2011.01.008. Extended Abstract in: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, Seoul, Korea (2009)

  • von zur Gathen, J.: Counting decomposable univariate polynomials. Combin. Probab. Comput. Special Issue 01 24, 294–328 (2014a). http://dx.doi.org/10.1017/S0963548314000388. Extended Abstract in: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, Seoul, Korea (2009). Preprint (2008). http://arxiv.org/abs/0901.0054

  • von zur Gathen, J.: Normal form for Ritt’s Second Theorem. Finite Fields Their Appl. 27, 41–71 (2014b). ISSN 1071-5797. http://dx.doi.org/10.1016/j.ffa.2013.12.004. http://arxiv.org/abs/1308.1135

  • von zur Gathen, J., Gutierrez, J., Rubio, R.: Multivariate polynomial decomposition. Appl. Algebra Eng. Commun. Comput. 14(1), 11–31 (2003). http://www.springerlink.com/content/0a5c0vvp82xbx5je/. Extended Abstract in: Proceedings of the Second Workshop on Computer Algebra in Scientific Computing, CASC 1999, München, Germany (1999)

  • von zur Gathen, J., Kozen, D., Landau, S.: Functional decomposition of polynomials. In: Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles, CA, pp. 127–131. IEEE Computer Society Press, Washington, DC (1987). http://dx.doi.org/10.1109/SFCS.1987.29

  • von zur Gathen, J., Viola, A., Ziegler, K.: Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields. SIAM J. Discrete Math. 27(2), 855–891 (2013). http://dx.doi.org/10.1137/110854680. http://arxiv.org/abs/0912.3312. Extended Abstract in: Proceedings of LATIN 2010, Oaxaca, Mexico (2010)

  • Giesbrecht, M.W.: Some Results on the Functional Decomposition of Polynomials. Master’s thesis, Department of Computer Science, University of Toronto. Technical Report 209/88 (1988). http://arxiv.org/abs/1004.5433

  • Gogia, S.K., Luthar, I.S.: Norms from certain extensions of \(F_{q}(T)\). Acta Arith. 38(4), 325–340 (1981). ISSN 0065-1036

    Google Scholar 

  • Goss, D.: Basic Structures of Function Field Arithmetic. Springer, Heidelberg (1996). ISBN 3-540-61087-1

    Google Scholar 

  • Gutierrez, J., Kozen, D.: Polynomial decomposition. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.) Computer Algebra Handbook, Sect. 2.2.4, pp. 26–28 (2003). http://www.springer.com/978-3-540-65466-7

  • Gutierrez, J., Sevilla, D.: On Ritt’s decomposition theorem in the case of finite fields. Finite Fields Their Appl. 12(3), 403–412 (2006). http://dx.doi.org/10.1016/j.ffa.2005.08.004. http://arxiv.org/abs/0803.3976

  • Hayes, D.R.: The distribution of irreducibles in \(\operatorname{GF}[q, x]\). Trans. Am. Math. Soc. 117, 101–127 (1965). http://dx.doi.org/10.2307/1994199

  • Henderson, M., Matthews, R.: Composition behaviour of sub-linearised polynomials over a finite field. In: Finite Fields: Theory, Applications, and Algorithms, Waterloo, ON, 1997. Contemporary Mathematics, vol. 225, pp. 67–75. American Mathematical Society, Providence (1999)

    Google Scholar 

  • Hou, X., Mullen, G.L.: Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields. Finite Fields Their Appl. 15(3), 304–331 (2009). http://dx.doi.org/10.1016/j.ffa.2008.12.004

  • Kozen, D., Landau, S.: Polynomial decomposition algorithms. J. Symbolic Comput. 7, 445–456 (1989). http://dx.doi.org/10.1016/S0747-7171(89)80027-6 (1989). An earlier version was published as Technical Report 86-773, Cornell University, Department of Computer Science, Ithaca, New York (1986)

  • Kozen, D., Landau, S., Zippel, R.: Decomposition of algebraic functions. J. Symbolic Comput. 22, 235–246 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Landau, S., Miller, G.L.: Solvability by radicals is in polynomial time. J. Comput. Syst. Sci. 30, 179–208 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • Levi, H.: Composite polynomials with coefficients in an arbitrary field of characteristic zero. Am. J. Math. 64, 389–400 (1942)

    Article  MATH  Google Scholar 

  • Mullen, G.L., Panario, D.: Handbook of Finite Fields. Discrete Mathematics and Its Applications. CRC Press, Boca Raton (2013). ISBN 978-1-4398-7378-6 (Hardback). http://www.crcpress.com/product/isbn/9781439873786

  • Ore, O.: On a special class of polynomials. Trans. Am. Math. Soc. 35, 559–584 (1933)

    Article  MathSciNet  Google Scholar 

  • Schinzel, A.: Selected Topics on Polynomials. The University of Michigan Press, Ann Arbor (1982). ISBN 0-472-08026-1

    MATH  Google Scholar 

  • Schinzel, A.: Polynomials with Special Regard to Reducibility. Cambridge University Press, Cambridge (2000). ISBN 0521662257

    Book  MATH  Google Scholar 

  • Tortrat, P.: Sur la composition des polynômes. Colloq. Math. 55(2), 329–353 (1988)

    MATH  MathSciNet  Google Scholar 

  • Turnwald, G.: On Schur’s conjecture. J. Australian Math. Soc. Ser. A 58, 312–357 (1995). http://anziamj.austms.org.au/JAMSA/V58/Part3/Turnwald.html

  • Wan, D.: Zeta functions of algebraic cycles over finite fields. Manuscripta Math. 74, 413–444 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Williams, K.S.: Polynomials with irreducible factors of specified degree. Can. Math. Bull. 12, 221–223 (1969). ISSN 0008-4395

    Google Scholar 

  • Zannier, U.: Ritt’s Second Theorem in arbitrary characteristic. J. Reine Angew. Math. 445, 175–203 (1993)

    MATH  MathSciNet  Google Scholar 

  • Zannier, U.: On composite lacunary polynomials and the proof of a conjecture of Schinzel. Invent. Math. 174, 127–138 (2008). ISSN 0020-9910 (Print) 1432-1297 (Online). http://dx.doi.org/10.1007/s00222-008-0136-8. http://arxiv.org/abs/0705.0911v1

  • Ziegler, K.: Tame decompositions and collisions. In: Nabeshima, K. (ed.) Proceedings of the 2014 International Symposium on Symbolic and Algebraic Computation ISSAC ’14, Kobe, Japan, pp. 421–428. ACM Press (2014). http://dx.doi.org/10.1145/2608628.2608653. http://arxiv.org/abs/1402.5945

  • Zieve, M.: Personal communication (2011)

    Google Scholar 

  • Zieve, M.E., Müller, P.: On Ritt’s Polynomial Decomposition Theorems, Submitted, 38 pp. (2008). http://arxiv.org/abs/0807.3578

  • Zippel, R.: Rational function decomposition. In: Watt, S.M. (ed.) Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC 1991, Bonn, Germany, pp. 1–6. ACM Press, Bonn (1991). ISBN 0-89791-437-6

    Google Scholar 

  • Zsigmondy, K.: Über die Anzahl derjenigen ganzzahligen Functionen \(n\)-ten Grades von \(x\), welche in Bezug auf einen gegebenen Primzahlmodul eine vorgeschriebene Anzahl von Wurzeln besitzen. Sitzungsber. Kaiserl. Akad. Wiss. Abt. II 103, 135–144 (1894)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was funded by the B-IT Foundation and the Land Nordrhein-Westfalen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

von zur Gathen, J., Ziegler, K. (2015). Survey on Counting Special Types of Polynomials. In: Gutierrez, J., Schicho, J., Weimann, M. (eds) Computer Algebra and Polynomials. Lecture Notes in Computer Science(), vol 8942. Springer, Cham. https://doi.org/10.1007/978-3-319-15081-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15081-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15080-2

  • Online ISBN: 978-3-319-15081-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics