Skip to main content

Networks and Hierarchies: Approaching Complexity in Evolutionary Theory

  • Chapter
  • First Online:
Macroevolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 2))

Abstract

This expansion of the hierarchy theory of evolution provides a new perspective in which biological phenomena are conceptualized. In this work, we (1) attempt to revise the ontology of levels of biological organization and clarify the relationship between the economic and genealogical hierarchies; (2) explore the implications of network theory for evolutionary dynamics in a hierarchical context; and (3) elucidate evolutionary causality by disentangling abiotic drivers from proximal evolutionary processes (the origin and sorting of variation) and their integration across hierarchies. We suggest that a pervasive pattern of stability in living systems across scale results from the architecture of nature’s economy itself—biological systems consisting of hierarchically nested, complex networks are extremely robust to extrinsic perturbations. We further argue that instances of evolution are episodic and rapid; they are transient between equilibrial states that ensue when network stability is compromised by sufficiently strong disturbances affecting biological entities at multiple levels of organization. We also claim that environmental abiotic factors are ultimately responsible for these perturbations that, when filtered through the economic hierarchy, shape the patterns of diversity and disparity of life as we know it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249–252

    PubMed  CAS  Google Scholar 

  • Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–4957

    PubMed  CAS  Google Scholar 

  • Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Google Scholar 

  • Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–381

    PubMed  CAS  Google Scholar 

  • Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223:1–18

    PubMed  CAS  Google Scholar 

  • Allen TFH (2008) Hierarchy theory in ecology. Encyclopedia of Ecology. Elsevier, Oxford, pp 1852–1857

    Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Allesina S, Bodini A (2004) Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. J Theor Biol 230:351–358

    PubMed  Google Scholar 

  • Allmon WD (1992) A causal analysis of stages in allopatric speciation. Oxf Surv Evol Biol 8:219–257

    Google Scholar 

  • Almaas E (2007) Biological impacts and context of network theory. J Exp Biol 210:1548–1558

    PubMed  Google Scholar 

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867

    PubMed  CAS  Google Scholar 

  • Alroy J (2000) Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319–329

    Google Scholar 

  • Álvarez-Buylla ER, Chaos Á, Aldana M et al (2008) Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3:e3626

    PubMed Central  PubMed  Google Scholar 

  • Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11149–11152

    PubMed Central  PubMed  CAS  Google Scholar 

  • Anderson PE, Jensen HJ (2005) Network properties, species abundance and evolution in a model of evolutionary ecology. J Theor Biol 232:551–558

    PubMed  Google Scholar 

  • Barabási A-L (2002) Linked: the new science of networks. Perseus, Cambridge, MA

    Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    PubMed  Google Scholar 

  • Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288:50–59

    Google Scholar 

  • Barabasi A-L, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A 272:173–187

    Google Scholar 

  • Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–114

    PubMed  Google Scholar 

  • Barthélémy M, Amaral LAN (1999) Small-world networks: evidence for a crossover picture. Phys Rev Lett 82:3180–3183

    Google Scholar 

  • Beklemishev VN (1970) Biotsenologicheskie osnovy sravnitelnoj parazitologii. Nauka, Moskva

    Google Scholar 

  • Benton TG, Cameron TC, Grant A (2004) Population responses to perturbations: predictions and responses from laboratory mite populations. J Anim Ecol 73:983–995

    Google Scholar 

  • Berg J, Lässig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51

    PubMed Central  PubMed  Google Scholar 

  • Bergman A, Feldman MW (2003) On the population genetics of punctuations. In: Crutchfield JP, Schuster P (eds) Evolutionary dynamics–exploring the interplay of selection, accident, neutrality, and function. Oxford University Press, Oxford, pp 81–100

    Google Scholar 

  • Bergman A, Siegal ML (2003) Evolutionary capacitance as a general feature of complex gene networks. Nature 424:549–552

    PubMed  CAS  Google Scholar 

  • Bonelli JR, Brett CE, Miller AI, Bennington JB (2006) Testing for faunal stability across a regional biotic transition: quantifying stasis and variation among recurring coral-rich biofacies in the Middle Devonian Appalachian Basin. Paleobiology 32:20–37

    Google Scholar 

  • Booch G (2007) Object-oriented analysis and design with applications. Addison-Wesley, Upper Saddle River, NJ

    Google Scholar 

  • Boucot AJ (1975) Evolution and extinction rate controls. Elsevier, Amsterdam

    Google Scholar 

  • Boucot AJ (1978) Community evolution and rates of cladogenesis. Evol Biol 11:545–655

    Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865

    PubMed  CAS  Google Scholar 

  • Brett CE, Baird GC (1995) Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian Faunas in the Appalachian Basin. In: Erwin DH, Anstey R (eds) New approaches to speciation in the fossil record. Columbia University Press, New York, pp 285–315

    Google Scholar 

  • Brett CE, Ivany LC, Schopf KM (1996) Coordinated stasis: an overview. Palaeogeogr Palaeoclimatol Palaeoecol 127:1–20

    Google Scholar 

  • Brogaard B (2004) Species as individuals. Biol Philos 19:223–242

    Google Scholar 

  • Bunge M (1979) Treatise on basic philosophy. A world of systems, vol 4. D. Reidel, Dordrecht

    Google Scholar 

  • Buss LW (1983) Evolution, development, and the units of selection. Proc Natl Acad Sci USA 80:1387–1391

    PubMed Central  PubMed  CAS  Google Scholar 

  • Camacho J, Guimerà R, Amaral LAN (2002) Robust patterns in food web structure. Phys Rev Lett 88:228102

    PubMed  Google Scholar 

  • Casás-Selves M, DeGregori J (2011) How cancer shapes evolution and how evolution shapes cancer. Evo Edu Outreach 4:624–634

    Google Scholar 

  • Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci USA 87:9610–9614

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cattin M-F, Bersier L-F, Banašek-Richter C et al (2004) Phylogenetic constraints and adaptation explain food-web structure. Nature 427:835–839

    PubMed  CAS  Google Scholar 

  • Chernyshenko SV (2012) Coenome model: elementary ecological cycle as a dynamical unit. In: Troitzsch KG, Möhring M, Lotzmann U (eds) 26th European conference on modelling and simulation, ECMS 2012, Koblenz, Germany, 29 May–1 June 2012. European Council for Modeling and Simulation, pp 143–149

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Cornette JL, Lieberman BS (2004) Random walks in the history of life. Proc Natl Acad Sci USA 101:187–191

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cossins A (1998) Cryptic clues revealed. Nature 396:309–310

    PubMed  CAS  Google Scholar 

  • Cracraft J (1984) Conceptual and methodological aspects of the study of evolutionary rates, with some comments on bradytely in birds. In: Eldredge N, Stanley SM (eds) Living fossils. Springer, New York, pp 95–104

    Google Scholar 

  • Damuth J (1985) Selection among “species”: a formulation in terms of natural functional units. Evolution 39:1132–1146

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. J. Murray, London

    Google Scholar 

  • Davidson EH (2001) Genomic regulatory systems: development and evolution. Academic Press, San Diego

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    PubMed  CAS  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, New York

    Google Scholar 

  • Dawkins R (1982) Replicators and vehicles. In: King’s College Sociobiology Group eds. (ed) Current problems in sociobiology. Cambridge University Press, Cambridge, pp 45–64

    Google Scholar 

  • Didion DM (2003) Relevant bounds on hierarchical levels in the description of mechanisms. Hist Philos Life Sci 25:5–25

    PubMed  Google Scholar 

  • Dobzhansky TG (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187

    Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the Internet and WWW. Oxford University Press Inc., New York

    Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002a) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002b) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Google Scholar 

  • Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727

    PubMed  Google Scholar 

  • Eisenberg E, Levanon EY (2003) Preferential attachment in the protein network evolution. Phys Rev Lett 91:138701

    PubMed  Google Scholar 

  • Eldredge N (1985a) Unfinished synthesis: biological hierarchies and modern evolutionary thought. Oxford University Press, New York

    Google Scholar 

  • Eldredge N (1985b) Time frames: the rethinking of Darwinian evolution and the theory of punctuated equilibria. Simon and Schuster, New York

    Google Scholar 

  • Eldredge N (1989) Macroevolutionary dynamics: species, niches, and adaptive peaks. McGraw-Hill, New York

    Google Scholar 

  • Eldredge N (1995) Reinventing Darwin: the great debate at the high table of evolutionary theory. Wiley, New York

    Google Scholar 

  • Eldredge N (2003) The sloshing bucket: how the physical realm controls evolution. In: Crutchfield JP, Schuster P (eds) Evolutionary dynamics–exploring the interplay of selection, accident, neutrality, and function. Oxford University Press, Oxford, pp 3–32

    Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, pp 82–115

    Google Scholar 

  • Eldredge N, Salthe SN (1984) Hierarchy and evolution. Oxf Surv Evol Biol 1:184–208

    Google Scholar 

  • Eldredge N, Thompson JD, Brakefield PM et al (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145

    Google Scholar 

  • Elena SF, Wilke CO, Ofria C, Lenski RE (2007) Effects of population size and mutation rate on the evolution of mutational robustness. Evolution 61:666–674

    PubMed  Google Scholar 

  • Ereshefsky M (2001) The poverty of the Linnaean hierarchy: a philosophical study of biological taxonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York

    Google Scholar 

  • Fewell JH (2003) Social insect networks. Science 301:1867–1870

    PubMed  CAS  Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection, 2nd edn. Dover, New York

    Google Scholar 

  • Foote M (2005) Pulsed origination and extinction in the marine realm. Paleobiology 31:6–20

    Google Scholar 

  • Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313:831–833

    PubMed  CAS  Google Scholar 

  • Futuyma DJ (1989) Speciational trends and the role of species in macroevolution. Am Nat 134:318–321

    Google Scholar 

  • Gams H (1918) Prinzipienfragen der Vegetationsforschung: ein Beitrag zur Begriffsklärung und Methodik der Biocoenologie. Vierteljahresschr Naturf Gesellsch Zürich 63:293–493

    Google Scholar 

  • Ghiselin MT (1974) A radical solution to the species problem. Syst Zool 23:536–544

    Google Scholar 

  • Ghiselin MT (1981) Categories, life, and thinking. Behav Brain Sci 4:269–283

    Google Scholar 

  • Gibson G, Wagner G (2000) Canalization in evolutionary genetics: a stabilizing theory? BioEssays 22:372–380

    PubMed  CAS  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Google Scholar 

  • Gilmour JSL, Gregor JW (1939) Demes: a suggested new terminology. Nature 144:333–334

    Google Scholar 

  • Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    PubMed  CAS  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115–151

    Google Scholar 

  • Gould SJ, Raup DM, Sepkoski JJ et al (1977) The shape of evolution; a comparison of real and random clades. Paleobiology 3:23–40

    Google Scholar 

  • Gould SJ, Gilinsky NL, German RZ (1987) Asymmetry of lineages and the direction of evolutionary time. Science 236:1437–1441

    PubMed  CAS  Google Scholar 

  • Grant PR, Grant BR (2011) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton

    Google Scholar 

  • Grantham TA (1995) Hierarchical approaches to macroevolution: recent work on species selection and the “Effect hypothesis”. Annu Rev Ecol Syst 26:301–321

    Google Scholar 

  • Grantham TA (2001) Hierarchies in evolution. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 188–192

    Google Scholar 

  • Grantham T (2007) Is macroevolution more than successive rounds of microevolution? Palaeontology 50:75–85

    Google Scholar 

  • Gregory TR (2004) Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology 30:179–202

    Google Scholar 

  • Gregory TR, Hebert PDN (1999) The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 9:317–324

    PubMed  CAS  Google Scholar 

  • Grene M (1987) Hierarchies in biology. Am Sci 75:504–510

    Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    PubMed  CAS  Google Scholar 

  • Hamilton WD (1964a) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16

    PubMed  CAS  Google Scholar 

  • Hamilton WD (1964b) The genetical evolution of social behaviour. II. J Theor Biol 7:17–52

    PubMed  CAS  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc Lond 42:3–16

    Google Scholar 

  • Hathaway RF (1969) Hierarchy and the definition of order in the letters of Pseudo-Dionysius: a study in the form and meaning of the Pseudo-Dionysian writings. Nijhoff, The Hague

    Google Scholar 

  • Hennig W (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hermisson J, Wagner GP (2004) The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–2284

    PubMed Central  PubMed  Google Scholar 

  • Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4:e23

    PubMed Central  PubMed  Google Scholar 

  • Howard ML, Davidson EH (2004) cis-Regulatory control circuits in development. Dev Biol 271:109–118

    PubMed  CAS  Google Scholar 

  • Hull D (1976) Are species really individuals? Syst Zool 25:174–191

    Google Scholar 

  • Hull DL (1978) A matter of individuality. Philos Sci 45:335–360

    Google Scholar 

  • Hull D (1980) Individuality and selection. Annu Rev Ecol Syst 11:311–322

    Google Scholar 

  • Hull DL (1981) Units of evolution: a metaphysical essay. In: Jensen UJ, Harré R (eds) The philosophy of evolution. Harvester, London, pp 23–44

    Google Scholar 

  • Hull DL (1988) Interactors versus vehicles. In: Plotkin HC (ed) The role of behavior in evolution. MIT Press, Cambridge, MA, pp 19–50

    Google Scholar 

  • Hunt G (2008) Gradual or pulsed evolution: when should punctuational explanations be preferred? Paleobiology 34:360–377

    Google Scholar 

  • Ingolia NT (2004) Topology and robustness in the Drosophila segment polarity network. PLoS Biol 2:e123

    PubMed Central  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159–183

    Google Scholar 

  • Jablonka E, Lamb MJ (2005) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge

    Google Scholar 

  • Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Syst 39:501–524

    Google Scholar 

  • Jacob F (1974) The logic of living systems: a history of heredity. Allen Lane, London

    Google Scholar 

  • Jeong H, Tombor B, Albert R et al (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    PubMed  CAS  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Google Scholar 

  • Kauffman SA (1995) At home in the universe: the search for laws of self-organization and complexity. Oxford University Press, New York

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:1608–1612

    PubMed  Google Scholar 

  • Koestler A (1967) The ghost in the machine. Random House, New York

    Google Scholar 

  • Koestler A (1978) Janus: a summing up. Random House, New York

    Google Scholar 

  • Konhauser KO, Pecoits E, Lalonde SV et al (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–753

    PubMed  CAS  Google Scholar 

  • Kozlov AP (2014) Evolution by tumor neofunctionalization: the role of tumors in the origin of new cell types, tissues and organs. Academic Press, Oxford

    Google Scholar 

  • Lane D (2006) Hierarchy, complexity, society. In: Pumain D (ed) Hierarchy in natural and social sciences. Springer, Dordrecht, pp 81–119

    Google Scholar 

  • Lessios HA (2008) The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus. Annu Rev Ecol Evol Syst 39:63–91

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Levins R (1970) Complex systems. In: Waddington CH (ed) Towards a theoretical biology. 3. Drafts. Aldine, Chicago, pp 73–88

    Google Scholar 

  • Levinton JS, Bambach RK (1975) A comparative study of Silurian and recent deposit-feeding bivalve communities. Paleobiology 1:97–124

    Google Scholar 

  • Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Google Scholar 

  • Lieberman BS, Vrba ES (1995) Hierarchy theory, selection, and sorting. Bioscience 45:394–399

    Google Scholar 

  • Lovelock JE (1972) Gaia as seen through the atmosphere. Atmos Environ 6:579–580

    Google Scholar 

  • Lovelock JE (1979) Gaia: a new look at life on Earth. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26:2–10

    CAS  Google Scholar 

  • MacArthur R (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36:533–536

    Google Scholar 

  • Mandelbrot BB (1977) Fractals: form, chance, and dimension. W. H. Freeman, San Francisco

    Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, New York

    Google Scholar 

  • Masing V (1981) Consortia as elements of the functional structure of biocenoses. In: Laasimer L (ed) Anthropogenous changes in the plant cover of Estonia. Academy of Sciences of the Estonian SSR, Institute of Zoology and Botany, Tartu, pp 64–76

    Google Scholar 

  • Mattila TM, Bokma F (2008) Extant mammal body masses suggest punctuated equilibrium. Proc R Soc Lond B Biol Sci 275:2195–2199

    Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201:1145–1147

    Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. W. H. Freeman, Oxford

    Google Scholar 

  • McGhee GR (1998) Theoretical morphology: the concept and its applications. Columbia University Press, New York

    Google Scholar 

  • McGhee GR (2007) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, Cambridge

    Google Scholar 

  • McKinney ML (1990a) Classifying and analyzing evolutionary trends. In: McNamara KJ (ed) evolutionary trends. Belhaven Press, London, pp 28–58

    Google Scholar 

  • McKinney ML (1990b) Trends in body-size evolution. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, London, pp 75–118

    Google Scholar 

  • McKinney ML, Allmon WD (1995) Metapopulations and disturbance: from patch dynamics to biodiversity dynamics. New approaches to speciation in the fossil record. Columbia University Press, New York, pp 123–183

    Google Scholar 

  • McNamara KJ (1990) Evolutionary trends. Belhaven Press, London

    Google Scholar 

  • McNamara KJ (2006) Evolutionary trends. In: eLS, Wiley. doi:10.1038/npg.els.0004136

  • McShea DW (1994) Mechanisms of large-scale evolutionary trends. Evolution 48:1747–1763

    Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, Chicago

    Google Scholar 

  • Meiklejohn CD, Hartl DL (2002) A single mode of canalization. Trends Ecol Evol 17:468–473

    Google Scholar 

  • Melott AL, Lieberman BS, Laird CM et al (2004) Did a gamma-ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61

    CAS  Google Scholar 

  • Michod RE (1983) Population biology of the first replicators: on the origin of the genotype, phenotype and organism. Am Zool 23:5–14

    CAS  Google Scholar 

  • Milgram S (1967) The small world problem. Psychol Today 1:61–67

    Google Scholar 

  • Miller W III (2001) What’s in a name? Ecologic entities and the marine paleoecologic record. In: Allmon WD, Bottjer DJ (eds) Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York, pp 15–33

    Google Scholar 

  • Miller W III (2002) Regional ecosystems and the origin of species. Neues Jahrb Geol Palaontol Abh 225:137–156

    Google Scholar 

  • Miller W III (2006) What every paleontologist should know about species: new concepts and questions. Neues Jahrb Geol Palaontol Abh 2006(9):557–576

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    PubMed  CAS  Google Scholar 

  • Möbius KA (1877) Die auster und die Austernwirtschaft. Verlag von Wiegandt: Hemple and Parey, Berlin

    Google Scholar 

  • Montoya JM, Solé RV (2002) Small world patterns in food webs. J Theor Biol 214:405–412

    PubMed  Google Scholar 

  • Montoya JM, Solé RV (2003) Topological properties of food webs: from real data to community assembly models. Oikos 102:614–622

    Google Scholar 

  • Newell ND (1952) Periodicity in invertebrate evolution. J Paleontol 26:371–385

    Google Scholar 

  • Newell ND (1967) Revolutions in the history of life. In: Albritton CC Jr (ed) Uniformity and simplicity: a symposium on the principle of the uniformity of nature, Nov 1963. GSA Special Papers, No. 89. Geological Society of America, Boulder, CO, pp 63–89

    Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Clarendon Press, Oxford

    Google Scholar 

  • Okasha S (2011) Biological ontology and hierarchical organization: a defense of rank freedom. In: Calcott B, Sterelny K (eds) The major transitions in evolution revisited. MIT Press, Cambridge, pp 53–64

    Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Paterson HEH (1985) The recognition concept of species. Species and speciation. Transvaal Museum, Pretoria, pp 21–29

    Google Scholar 

  • Pattee HH (1970) The problem of biological hierarchy. In: Waddington CH (ed) Towards a theoretical biology 3, drafts. Edinburgh University Press, Edinburgh, pp 117–136

    Google Scholar 

  • Pattee HH (1973) Hierarchy theory: the challenge of complex systems. G. Braziller, New York

    Google Scholar 

  • Pattee HH (1977) Dynamic and linguistic modes of complex systems. Int J Gen Syst 3:259–266

    Google Scholar 

  • Pavé A (2006) Biological and ecological systems hierarchical organisation. In: Pumain D (ed) Hierarchy in natural and social sciences. Springer, Dordrecht, pp 39–70

    Google Scholar 

  • Pimm SL (1980) Food web design and the effect of species deletion. Oikos 35:139

    Google Scholar 

  • Pimm SL (1991) The balance of nature. University of Chicago Press, London

    Google Scholar 

  • Polanyi M (1968) Life’s irreducible structure: live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them. Science 160:1308–1312

    PubMed  CAS  Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    PubMed  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Google Scholar 

  • Raup DM (1981) Extinction: bad genes or bad luck? Acta Geol Hisp 16:25–33

    Google Scholar 

  • Raup DM (1987) Major features of the fossil record and their implications for evolutionary rate studies. In: Campbell KSW, Day MF (eds) Rates of evolution. Allen and Unwin, London, pp 1–14

    Google Scholar 

  • Raup DM, Gould SJ (1974) Stochastic simulation and evolution of morphology-towards a nomothetic paleontology. Syst Biol 23:305–322

    Google Scholar 

  • Raup D, Gould S, Schopf T, Simberloff D (1973) Stochastic models of phylogeny and the evolution of diversity. J Geol 81:525–542

    Google Scholar 

  • Ravasz E, Somera AL, Mongru DA et al (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    PubMed  CAS  Google Scholar 

  • Reinke J (1872) Ueber die anatomischen Verhältnisse einiger Arten von Gunnera L. Nachrichten von der Königl Gesellschaft der Wissenschaften und der Georg- Augusts-Universität zu Göttingen 9:100–108

    Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Google Scholar 

  • Roopnarine PD (2003) Analysis of rates of morphologic evolution. Annu Rev Ecol Syst 34:605–632

    Google Scholar 

  • Roopnarine PD (2006) Extinction cascades and catastrophe in ancient food webs. Paleobiology 32:1–19

    Google Scholar 

  • Roopnarine PD (2009) Ecological modeling of paleocommunity food webs. In: Dietl GP, Flessa KW (eds) Conservation paleobiology: using the past to manage for the future. Paleontological Society, [S.l.], Boulder, CO, pp 195–220

    Google Scholar 

  • Roopnarine PD, Byars G, Fitzgerald P (1999) Anagenetic evolution, stratophenetic patterns, and random walk models. Paleobiology 25:41–57

    Google Scholar 

  • Root RB (1967) The niche exploitation pattern of the blue–gray gnatcatcher. Ecol Monogr 37:317–350

    Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    PubMed  CAS  Google Scholar 

  • Salthe SN (1985) Evolving hierarchical systems: their structure and representation. Columbia University Press, New York

    Google Scholar 

  • Scharloo W (1991) Canalization: genetic and developmental aspects. Annu Rev Ecol Syst 22:65–93

    Google Scholar 

  • Schmidt-Lainé C, Pavé A (2002) Environnement: modélisation et modèles pour comprendre, agir et décider dans un contexte interdisciplinaire. Natures Sci Société 10:5–25

    Google Scholar 

  • Schmidt-Kittler N, Vogel K (1991) Constructional morphology and evolution. Springer, Berlin

    Google Scholar 

  • Schoch RM (1986) Phylogeny reconstruction in paleontology. Van Nostrand Reinhold, New York

    Google Scholar 

  • Seilacher A (1970) Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393–396

    Google Scholar 

  • Sepkoski JJ (1978) A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:223–251

    Google Scholar 

  • Sepkoski JJ (1993) Ten years in the library; new data confirm paleontological patterns. Paleobiology 19:43–51

    PubMed  Google Scholar 

  • Shaposhnikov GK (1965) Morpfologicheskaya divergentsiya i konvergentsiya v eksperimente s tlyami (Homoptera, Aphidinea). Entomol Obozr 44:3–25

    Google Scholar 

  • Shaposhnikov GK (1978) Dinamika klonov, populyatsij i vidov i evolyutsiya. Zh Obshch Biol 39:15–33

    Google Scholar 

  • Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528–10532

    PubMed Central  PubMed  CAS  Google Scholar 

  • Siegal ML, Promislow DEL, Bergman A (2007) Functional and evolutionary inference in gene networks: does topology matter? Genetica 129:83–103

    PubMed  CAS  Google Scholar 

  • Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Syst 22:115–143

    Google Scholar 

  • Simon HA (1955) On a class of skew distribution functions. Biometrika 42:425–440

    Google Scholar 

  • Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482

    Google Scholar 

  • Simon HA (1973) The organization of complex systems. In: Pattee HH (ed) Hierarchy theory: the challenge of complex systems. G. Braziller, New York, pp 1–27

    Google Scholar 

  • Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proc R Soc Lond B Biol Sci 268:2039–2045

    Google Scholar 

  • Solé RV, Saldaña J, Montoya JM, Erwin DH (2010) Simple model of recovery dynamics after mass extinction. J Theor Biol 267:193–200

    PubMed  Google Scholar 

  • Stanley SM (1975) A theory of evolution above the species level. Proc Natl Acad Sci USA 72:646–650

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stanley SM (1979) Macroevolution: pattern and process. W. H. Freeman, San Francisco

    Google Scholar 

  • Stanley SM (1990) Delayed recovery and the spacing of major extinctions. Paleobiology 16:401–414

    Google Scholar 

  • Stanley SM, Signor PW, Lidgard S, Karr AF (1981) Natural clades differ from “random” clades: simulations and analyses. Paleobiology 7:115–127

    Google Scholar 

  • Stearns SC, Kaiser M, Kawecki TJ (1995) The differential genetic and environmental canalization of fitness components in Drosophila melanogaster. J Evol Biol 8:539–557

    Google Scholar 

  • Stenseth NC, Maynard Smith J (1984) Coevolution in ecosystems: Red Queen evolution or stasis? Evolution 38:870–880

    Google Scholar 

  • Strogatz SH (2000) Nonlinear dynamics and chaos: with application to physics, biology, chemistry, and engineering. Westview press, Cambridge

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    PubMed  CAS  Google Scholar 

  • Strotz LC, Allen AP (2013) Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence. Proc Natl Acad Sci USA 110:2904–2909

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sugihara G, May R, Ye H et al (2012) Detecting causality in complex ecosystems. Science 338:496–500

    PubMed  CAS  Google Scholar 

  • Szathmáry E (1989) The emergence, maintenance, and transitions of the earliest evolutionary units. Oxf Surv Evol Biol 6:169–205

    Google Scholar 

  • Turner M, Romme W, Gardner R et al (1993) A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landsc Ecol 8:213–227

    Google Scholar 

  • Thorson G (1957) Bottom communities (sublittoral or shallow shelf). In: Hedgpeth JW (ed) Treatise on marine ecology and paleoecology. 1. Ecology, vol 67. The Geological Society of America Memoirs, Boulder, CO, pp 461–534

    Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH (1987) Landscape ecology. Bioscience 37:119–127

    Google Scholar 

  • Valentine JW, May CL (1996) Hierarchies in biology and paleontology. Paleobiology 22:23–33

    Google Scholar 

  • van Dam JA, Abdul Aziz H, Álvarez Sierra MÁ et al (2006) Long-period astronomical forcing of mammal turnover. Nature 443:687–691

    PubMed  Google Scholar 

  • Vernadsky VI (1998) The biosphere. Copernicus, New York

    Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington, D.C.

    Google Scholar 

  • Villarreal C, Padilla-Longoria P, Alvarez-Buylla ER (2012) General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks. Phys Rev Lett 109:118102

    PubMed  Google Scholar 

  • Volk T (1997) Gaia’s body: toward a physiology of Earth. Springer, New York

    Google Scholar 

  • von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188–192

    Google Scholar 

  • Vrba ES (1980) Evolution, species and fossils: how does life evolve? S Afr J Sci 76:61–84

    Google Scholar 

  • Vrba ES (1984a) Evolutionary pattern and process in the sister-group Acelaphini-Aepycerotini (Mammalia: Bovidae). In: Eldredge N, Stanley S (eds) Living fossils. Springer, New York, pp 62–79

    Google Scholar 

  • Vrba ES (1984b) What is species selection? Syst Zool 33:318–328

    Google Scholar 

  • Vrba ES (1985) Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 81:229–236

    Google Scholar 

  • Vrba ES (1987) Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evol Ecol 1:283–300

    Google Scholar 

  • Vrba ES (1989) Levels of selection and sorting with special reference to the species level. Oxf Surv Evol Biol 6:111–168

    Google Scholar 

  • Vrba ES (1993) Turnover-pulses, the Red Queen, and related topics. Am J Sci 293(A):418–452

    Google Scholar 

  • Vrba ES, Eldredge N (1984) Individuals, hierarchies and processes: toward a more complete evolutionary theory. Paleobiology 10:146–171

    Google Scholar 

  • Vrba ES, Gould SJ (1986) The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217–228

    Google Scholar 

  • Waddington CH (1942) Canalization of development and the Inheritance of acquired characters. Nature 150:563–565

    Google Scholar 

  • Wagner A (1996) Does evolutionary plasticity evolve? Evolution 50:1008–1023

    Google Scholar 

  • Wagner A (2002) Estimating coarse gene network structure from large-scale gene perturbation data. Genome Res 12:309–315

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner A (2003) How the global structure of protein interaction networks evolves. Proc Biol Sci 270:457–466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc R Soc Lond B 268:1803–1810

    CAS  Google Scholar 

  • Walker KR, Laporte LF (1970) Congruent fossil communities from Ordovician and Devonian carbonates of New York. J Paleontol 44:928–944

    Google Scholar 

  • Wallace P (1978) Homeomorphy between Devonian brachiopod communities in France and Iowa. Lethaia 11:259–272

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    PubMed  CAS  Google Scholar 

  • Weiss PA (1973) The science of life: the living system—a system for living. Futura, Mount Kisco

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    CAS  Google Scholar 

  • Whyte LL (1969) Structural hierarchies: a challenging class of physical and biological problems. In: Whyte LL, Wilson AG, Wilson D (eds) Hierarchical structures. Elsevier, New York, pp 3–17

    Google Scholar 

  • Williams RJ, Berlow EL, Dunne JA et al (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci USA 99:12913–12916

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wimsatt WC (1976) Reductionism, levels of organization, and the mind-body problem. In: Globus GG, Maxwell G, Savodnik I (eds) Consciousness and the brain: a scientific and philosophical inquiry. Plenum Press, New York, pp 205–267

    Google Scholar 

  • Woodger JH (1929) Biological principles: a critical study. Kegan Paul, Trench, Trubner & Co., London

    Google Scholar 

  • Wright S (1929) The evolution of dominance. Am Nat 63:556–561

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wright S (1953) Gene and organism. Am Nat 87:5–18

    Google Scholar 

  • Wright S (1955) Classification of the factors of evolution. Cold Spring Harb Symp Quant Biol 20:16–24D

    PubMed  CAS  Google Scholar 

  • Wright S (1980) Genic and organismic selection. Evolution 34:825

    Google Scholar 

  • Wright S (1982) The shifting balance theory and macroevolution. Annu Rev Genet 16:1–20

    PubMed  CAS  Google Scholar 

  • Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25:367–380

    Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466

    Google Scholar 

  • Wu J, Levin SA (1994) A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecol Monogr 64:447–464

    Google Scholar 

  • Zherikhin VV (1987) Biotsenoticheskaya regulyatsiya evolyutsii. Paleontol J 1:3–12

    Google Scholar 

  • Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21:1010–1024

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Tëmkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tëmkin, I., Eldredge, N. (2015). Networks and Hierarchies: Approaching Complexity in Evolutionary Theory. In: Serrelli, E., Gontier, N. (eds) Macroevolution. Interdisciplinary Evolution Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15045-1_6

Download citation

Publish with us

Policies and ethics