Skip to main content

Morphological Misfits and the Architecture of Development

  • Chapter
  • First Online:
Macroevolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 2))

Abstract

Morphological misfits can be defined as a miscellaneous class of numerically marginal, often lately discovered taxa, deviating in one or more dramatic aspects from the structural organization of their closest relatives. Morphological misfits are a widely diverse set of taxa which according to their anatomical, ontogenetic and phylogenetic nature may offer the opportunity for a multiplicity of case studies in evolutionary developmental biology. Anatomically, there are modular misfits such as the paussinae beetles, with their extravagant antennae borne on a quite usual beetle body, and systemic misfits such as Wolffia among the flowering plants, reduced to a minute blob of green matter, and the also bloblike parasitic crustacean Sacculina among the animals. The former, but not the latter, are suggestive of developmental modularity. Ontogenetically, there are one-phase only misfits, such as blepharicerid midges (aberrant larvae but conventional midge-shaped adults), and whole-life-cycle misfits such as cycliophorans. The former, but not the latter, would suggest an evolutionary independence of developmental stages. Some misfits have diverged recently from their morphologically conservative closest relatives (e.g. the duckweeds (Lemnoideae) from conventional Araceae), while others, such as chaetognaths and Welwitschia, are the sole members of lineages which diverged very deeply in time from their closest known or putative relatives. The former, but not the latter, can provide obvious opportunities for investigating character evolvability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkari N, Enghoff E, Minelli A (2014) Segmentation of millipede trunk as suggested by a homeotic mutant with six extra pairs of gonopods. Front Zool 11:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Arthur W (2000) The concept of developmental reprogramming and the quest for an inclusive theory of evolutionary mechanisms. Evol Dev 2:49–57

    Article  PubMed  CAS  Google Scholar 

  • Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764

    Article  PubMed  CAS  Google Scholar 

  • Arthur W (2011) Evolution: a developmental approach. Wiley, Chichester

    Google Scholar 

  • Baker AN, Rowe FWE, Clark HES (1986) A new class of Echinodermata from New Zealand. Nature 321:862–864

    Article  Google Scholar 

  • Bell A (1991) Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford

    Google Scholar 

  • Bell A (2008) Plant form: an illustrated guide to flowering plant morphology. New edition. Timber Press, Portland

    Google Scholar 

  • Bertone MA, Courtney GW, Wiegmann BM (2008) Phylogenetics and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes. Syst Entomol 33:668–687

    Article  Google Scholar 

  • Beutel RG, Ribera I, Bininda-Emonds ORP (2007) A genus-level supertree of Adephaga (Coleoptera). Org Divers Evol 7:255–269

    Article  Google Scholar 

  • Blower JG (1985) Millipedes. Synopses of the British fauna (NS) No. 35. EJ Brill/Dr W Backhuys, London

    Google Scholar 

  • Bowman TE, Garner SP, Hessler RR, Iliffe TM, Sanders HL (1985) Mictacea, a new order of Crustacea Peracarida. J Crustac Biol 5:74–78

    Article  Google Scholar 

  • Boxshall GA, Lincoln RJ (1983) Tantulocarida, a new class of Crustacea ectoparasitic on other crustaceans. J Crustac Biol 3:1–16

    Article  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485

    Article  PubMed  CAS  Google Scholar 

  • Cavolini F (1787) Sulla generazione dei pesci e dei granchi. Napoli

    Google Scholar 

  • Conway Morris S (1995) A new phylum from the lobster’s lips. Nature 378:661–662

    Article  Google Scholar 

  • Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating RC, French JC (2011) Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies. Am J Bot 98:654–668

    Article  PubMed  Google Scholar 

  • Cuvier G (1816) Le Règne Animal distribué d’après son organisation pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Deterville, Paris

    Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delage Y (1884) Evolution de la sacculine (Sacculina carcini Thomps.), crustacé endoparasite de l’ordre nouveau des Kentrogonides. Archives de zoologie expérimentale et générale (2)2:417–736

    Google Scholar 

  • Demange JM (1967) Recherches sur la segmentation du tronc des Chilopodes et des Diplopodes Chilognathes (Myriapodes). Mémoires du Muséum national d’Histoire naturelle, Paris (NS) A44:1–188

    Google Scholar 

  • Di Giulio A, Fattorini S, Kaupp A, Vigna Taglianti A, Nagel P (2003) Review of competing hypotheses of phylogenetic relationships of Paussinae (Coleoptera: Carabidae) based on larval characters. Syst Entomol 28:509–537

    Article  Google Scholar 

  • Drago L, Fusco G, Minelli A (2008) Non-systemic metamorphosis in male millipede appendages: long delayed, reversible effect of an early localized positional marker? Front Zool 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Drago L, Fusco G, Garollo E, Minelli A (2011) Structural aspects of leg-to-gonopod metamorphosis in male helminthomorph millipedes (Diplopoda). Front Zool 8:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Eco U (1999) Kant and the platypus—essays on language and cognition. Secker & Warburg, London

    Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Article  Google Scholar 

  • Funch P, Kristensen RM (1995) Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature 378:711–714

    Article  CAS  Google Scholar 

  • Fusco G (2005) Trunk segment numbers and sequential segmentation in myriapods. Evol Dev 7:608–617

    Article  PubMed  Google Scholar 

  • Geoffroy Saint-Hilaire I (1832–1837) Histoire générale et particulière des anomalies de l’organisation chez l’homme et les animaux. Ballière, Paris (1, 1832; 2, 1836; 3, 1836; 4, 1837)

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, Cambridge

    Google Scholar 

  • Gould SJ (2000) Of coiled oysters and big brains: how to rescue the terminology of heterochrony, now gone astray. Evol Dev 2:241–248

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Müller CHG (2007) A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Front Zool 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Helmkampf M, Bruchhaus I, Hausdorf B (2008) Multigene analysis of lophophorate and chaetognath phylogenetic relationships. Mol Phylogenet Evol 46:206–214

    Article  PubMed  CAS  Google Scholar 

  • Henriquez CL, Arias T, Pires JC, Croat TB, Schaal BA (2014) Phylogenomics of the plant family Araceae. Mol Phylogenet Evol 75:91–102

    Article  PubMed  Google Scholar 

  • Hoffman RL (1982) Diplopoda. In: Parker SP (ed) Synopsis and classification of living organisms, vol 2. McGraw-Hill, New York, pp 689–724

    Google Scholar 

  • Hogue CL (1981) Blephariceridae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual of nearctic Diptera, vol 1. Research Branch Agriculture Canada, Ottawa, pp 191–197

    Google Scholar 

  • Janies D, Mooi R (1998) Xyloplax is an asteroid. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 311–316

    Google Scholar 

  • Janies D, Voight JR, Daly M (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst Biol 60:420–438

    Article  PubMed  Google Scholar 

  • Jeffery JE, Bininda-Emonds ORP, Coates MI, Richardson MK (2002a) Analyzing evolutionary patterns in amniote embryonic development. Evol Dev 4:292–302

    Article  PubMed  Google Scholar 

  • Jeffery JE, Richardson MK, Coates MI, Bininda-Emonds ORP (2002b) Analyzing developmental sequences within a phylogenetic framework. Syst Biol 51:478–491

    Article  PubMed  Google Scholar 

  • Jeffery JE, Bininda-Emonds ORP, Coates MI, Richardson MK (2005) A new technique for identifying sequence heterochrony. Syst Biol 54:230–240

    Article  PubMed  Google Scholar 

  • Jiménez-Guri E, Okamura B, Holland PWH (2007) Origin and evolution of a myxozoan worm. Integr Comp Biol 47:752–758

    Article  PubMed  CAS  Google Scholar 

  • Katayama N, Koi S, Kato M (2010) Expression of SHOOT MERISTEMLESS, WUSCHEL, and ASYMMETRIC LEAVES1 homologs in the shoots of Podostemaceae: implications for the evolution of novel shoot organogenesis. Plant Cell 22:2131–2140

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Katayama N, Kato M, Yamada T (2013) Origin and development of the cryptic shoot meristem in Zeylanidium lichenoides (Podostemaceae). Am J Bot 100:635–646

    Article  PubMed  CAS  Google Scholar 

  • Kheirallah A-M, Aly A-NH, Abdel-Wahed NY (2000) Anamorphosis and life-history of the millipede Nopoiulus kochii (Gervais, 1847), new for Egypt. Zool Middle East 21:159–168

    Article  Google Scholar 

  • Kristensen RM (1983) Loricifera, a new phylum with Aschelminthes characters from the meiobenthos. Zeitschrift für Zoologische Systematik und Evolutionsforschung 21:163–180

    Article  Google Scholar 

  • Kristensen RM (1991) Loricifera. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. Aschelminthes. Wiley, New York, pp 351–375

    Google Scholar 

  • Kristensen RM, Funch P (2000) Micrognathozoa: a new class with complicated jaws like those of Rotifera and Gnathostomulida. J Morphol 246:1–49

    Article  PubMed  CAS  Google Scholar 

  • Lebedev OA (2009) A new specimen of Helicoprion Karpinsky, 1899 from Kazakhstanian Cisurals and a new reconstruction of its tooth whorl position and function. Acta Zoolog 90(Supp 1):171–182

    Article  Google Scholar 

  • Lee WL, Reiswig HM, Austin WC, Lundsten L (2012) An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia (Demospongiae, Cladorhizidae), from off of northern California, USA. Invertebr Biol 131:259–284

    Article  Google Scholar 

  • Marlétaz F, Martin E, Perez Y, Papillon D, Caubit X, Fasano L, Dossat C, Wincker P, Weissenbach J, Le Parco Y (2006) Chaetognath phylogenomics: a protostome with deuterostomes-like development. Curr Biol 16:R577–R578

    Article  PubMed  CAS  Google Scholar 

  • Márquez-Guzmán J, Engleman M, Martínez-Mena A, Martínez E, Ramos CH (1989) Anatomía reproductiva de Lacandonia schismatica (Lacandoniaceae). Ann Mo Bot Gard 76:124–127

    Article  Google Scholar 

  • Matus DQ, Copley RR, Dunn CW, Hejnol A, Eccleston H, Halanych KM, Martindale MQ, Telford MJ (2006) Broad taxon and gene sampling indicate that chaetognaths are protostomes. Curr Biol 16:R575–R576

    Article  PubMed  CAS  Google Scholar 

  • McKinney ML, McNamara KJ (1991) Heterochrony. The evolution of ontogeny. Plenum Press, New York

    Google Scholar 

  • McKinney ML (ed) (1988) Heterochrony in evolution: a multidisciplinary approach. Plenum Press, New York

    Google Scholar 

  • McNamara KJ (1986) A guide to the nomenclature of heterochrony. J Paleontol 60:4–13

    Google Scholar 

  • McNamara KJ (ed) (1995) Evolutionary change and heterochrony. Wiley, Chichester

    Google Scholar 

  • Minelli A (1993) Biological systematics. The state of the art. Chapman & Hall, London

    Google Scholar 

  • Minelli A (2003) The development of animal form. Cambridge University Press, Cambridge

    Google Scholar 

  • Obst M, Funch P (2003) Dwarf male of Symbion pandora (Cycliophora). J Morphol 255:261–278

    Article  PubMed  Google Scholar 

  • Poinar GO, van der Laan PA (1972) Morphology and life history of Sphaerularia bombi. Nematologica 18:239–252

    Article  Google Scholar 

  • Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Non-flowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae, and its bearing on the origin of the flower. Am J Bot 96:67–82

    Article  PubMed  Google Scholar 

  • Rutishauser R (1995) Developmental patterns of leaves in Podostemaceae as compared to more typical flowering plants: saltational evolution and fuzzy morphology. Can J Bot 73:1305–1317

    Article  Google Scholar 

  • Rutishauser R, Sattler R (1985) Complementarity and heuristic value of contrasting models in structural botany. I. General considerations. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 107:415–455

    Google Scholar 

  • Rutishauser R, Sattler R (1987) Complementarity and heuristic value of contrasting models in structural botany. II. Case study on leafwhorls: Equisetum and Ceratophyllum. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 109:227–255

    Google Scholar 

  • Rutishauser R, Sattler R (1989) Complementarity and heuristic value of contrasting models in structural botany. III. Case study on shoot-like “leaves” and leaf-like “shoots” in Utricularia macrorhiza and U. purpurea (Lentibulariaceae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 111:121–137

    Google Scholar 

  • Rutishauser R, Sattler R (1997) Expression of shoot processes in leaf development of Polemonium caeruleum as compared to other dicotyledons. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 119:563–582

    Google Scholar 

  • Rutishauser R, Grob V, Pfeifer E (2008) Plants are used to having identity crises. In: Minelli A, Fusco G (eds) Evolving pathways. Key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 190–210

    Google Scholar 

  • Sahli F (1990) On post-adult moults in Julida (Myriapoda, Diplopoda). Why periodomorphosis and intercalaries occur in males? In: Minelli A (ed) Proceedings of the 7th international congress of myriapodology. Brill, Leiden, pp 135–156

    Google Scholar 

  • Sattler R (1992) Process morphology: structural dynamics in development and evolution. Can J Bot 70:708–714

    Article  Google Scholar 

  • Sattler R, Jeune B (1992) Multivariate analysis confirms the continuum view of plant form. Ann Bot 69(249):262

    Google Scholar 

  • Sattler R, Rutishauser R (1997) The fundamental relevance of morphology and morphogenesis to plant research. Ann Bot 80:571–582

    Article  Google Scholar 

  • Sattler R (1996) Classical morphology and continuum morphology: opposition and continuum. Ann Bot 78:577–581

    Article  Google Scholar 

  • Sattler R (1988) Homeosis in plants. Am J Bot 75:1606–1617

    Article  Google Scholar 

  • Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosci 124:121–143

    Article  PubMed  Google Scholar 

  • Scholtz G (2008) On comparisons and causes in evolutionary developmental biology. In: Minelli A, Fusco G (eds) Evolving pathways. Cambridge University Press, Cambridge, pp 144–159

    Chapter  Google Scholar 

  • Siddall ME, Whiting MF (1999) Long-branch abstractions. Cladistics 15:9–24

    Article  Google Scholar 

  • Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81:961–967

    Article  PubMed  CAS  Google Scholar 

  • Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186

    Article  Google Scholar 

  • Smith KK (2002) Sequence heterochrony and the evolution of development. J Morphol 252:82–97

    Article  PubMed  Google Scholar 

  • Smith KK (2003) Time’s arrow: heterochrony and the evolution of development. Int J Dev Biol 47:613–621

    PubMed  Google Scholar 

  • Thompson JV (1830) On the Cirripedes or Barnacles; demonstrating their deceptive character; the extraordinary metamorphosis they undergo, and the class of animals to which they indisputably belong. In: Thompson JV (ed) Zoological Researches, and illustrations; or, natural history of nondescript or imperfectly known animals, vol 1(1). King and Ridings, Cork, pp 69–82

    Google Scholar 

  • Thompson JV (1835) Discovery of the metamorphosis in the second type of the cirripedes, viz. the lepades, completing the natural history of these singular animals, and confirming their affinity with the Crustacea. Philos Trans R Soc 126:355–358

    Article  Google Scholar 

  • Verhoeff KW (1923) Periodomorphose. Zoologischer Anzeiger 56(233–238):241–254

    Google Scholar 

  • Westheide W (1987) Progenesis as a principle in meiofauna evolution. J Nat Hist 21:843–854

    Article  Google Scholar 

  • Wilkins JS, Ebach MC (2013) The nature of classification: relationships and kinds in the natural sciences. Palgrave Macmillan, Basingstoke

    Book  Google Scholar 

  • Wolf K, Markiw ME (1984) Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Yaeger J (1981) Remipedia, a new class of Crustacea from a marine cave in the Bahamas. J Crustac Biol 1:328–333

    Article  Google Scholar 

  • Zrzavý J, Mihulka S, Kepka P, Bezdek A, Tietz D (1998) Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285

    Article  Google Scholar 

Download references

Acknowledgments

I am very grateful to Emanuele Serrelli for kindly inviting me to contribute to this volume and to Wallace Arthur for his sensible suggestions on my MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Minelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Minelli, A. (2015). Morphological Misfits and the Architecture of Development. In: Serrelli, E., Gontier, N. (eds) Macroevolution. Interdisciplinary Evolution Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15045-1_10

Download citation

Publish with us

Policies and ethics