Skip to main content

Part of the book series: Progress in Biological Control ((PIBC,volume 19))

Abstract

Phytoseiidae is the most important family of plant inhabiting predatory mites. These mites are extensively used as biological control agents for management of mite and insect pests of crops grown in greenhouses and in open field. Interest in research on phytoseiids has steadily increased worldwide during the last 50 years, resulting in a large number of papers regarding their taxonomy, biology, ecology and practical use. Currently, there are more than 2,700 species described in this family, which are organized in 91 genera. Phytoseiids have been reported from all continents, except Antarctica. Descriptions of new species and conduction of works on bioecological studies as well as on their practical use continue steady. This chapter is not intended to be an exhaustive review of research involving phytoseiids. Instead, it gives a set of statistics about the taxonomy, world distribution and micro-habitats occupied by these mites. A summary of more recent investigations on these mites has been also collated in this chapter. Suggestions are presented for activities that could help improvement of biological control projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Gil OJ, Jorge SJ, Busoli AC (2013) Control biologico classic na America Latina: o caso do Peru. In: Busoli AC, de Alencar JRCC, Fraga DF, de Souza LA, de Souza BHS, Grigolli JFJ (eds) Tópicos em entomologia agrícola, vol IV. Gráfica Multipress, Jaboticabal-SP, p 66–5

    Google Scholar 

  • Alen AD, Neuenschwander P, Manyyong VM, Coulibaly O, Hanna R (2005) The impact of IITA-led biological control of major pests in Sub-Saharan African agriculture, Impact series. IITA, Ibadan, p 26

    Google Scholar 

  • Bravenboer L, Dosse G (1962) Phytoseiulus riegeli Dosse als Prädator einiger Schadmilben aus der Tetranychus urticae Gruppe. Entomol Exp Appl 5:291–304

    Article  Google Scholar 

  • Camporese P, Duso C (1995) Life history and life table parameters of the predatory mite Typhlodromus talbii. Entomol Exp Appl 77:149–157

    Article  Google Scholar 

  • Carrillo D, Frank GH, Rodrigues JC, Peňa JE (2012) A review of the natural enemies of the red palm mite, Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol 57:347–360

    Article  PubMed  Google Scholar 

  • Chant DA (1961) An experiment in biological control of Tetranychus telarius (L.) (Acarina: Tetranychidae) in a greenhouse using the predacious mite Phytoseiulus persimilis A (Phytoseiidae). Can Entomol 93:437–443

    Google Scholar 

  • Chant DA, McMurtry JA (1994) A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Int J Acarol 20:223–310

    Article  Google Scholar 

  • Chant DA, McMurtry JA (2007) Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, p 219

    Google Scholar 

  • Croft BA, MacRae IV (1992) Persistence of Typhlodromus pyri and Metaseiulus occidentalis (Acari: Phytoseiidae) on apple after inoculative release and competition with Zetzellia mali (Acari: Stigmaeidae). Environ Entomol 21:1168–1177

    Article  Google Scholar 

  • Da Silva RV, Narita JPZ, Vichitbandha P, Chandrapatya A, Konvipasruang P, Kongshuensin M, Moraes GJ (2014) Prospection for predatory mites to control coconut pest mite in Thailand, with taxonomic descriptions of collected Mesostigmata (Acari). J Nat Hist 48:699–719

    Article  Google Scholar 

  • Demite PR, McMurtry JA, de Moraes GJ (2014a) Phytoseiidae database: a website for taxonomic and distribution information on phytoseiid mites (Acari). Zootaxa 3795:571–577

    Article  PubMed  Google Scholar 

  • Demite PR, Moraes GJ, McMurtry JA, Denmark HA, Castilho RC (2014b) Phytoseiidae Database. Available at: www.lea.esalq.usp.br/phytoseiidae. Accessed 8 Apr 2014

  • Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE (1999) Behavioural ecology of plant-phytoseiid interactions mediated by herbivore-induced plant volatiles. In: Bruin J, van der Geest LPS, Sabelis MW (eds) Ecology and evolution of the Acari. Kluwer Academic Publishers, Dordrecht, pp 251–268

    Chapter  Google Scholar 

  • Dunley JE, Croft BA (1990) Dispersal between and colonization of apple by Metaseiulus occidentalis and Typhlodromus pyri (Acarina: Phytoseiidae). Exp Appl Acarol 10:137–149

    Article  Google Scholar 

  • Evans GO (1992) Principles of acarology. CAB International, University Press, Cambridge, UK, Wallingford, p 563

    Google Scholar 

  • Famah Sourassou N, Hanna R, Negloh K, Breeuwer JAJ, Sabelis MW (2013) Females as intraguild predators of males in cross-pairing experiments with phytoseiid mites. Exp Appl Acarol 61:173–182

    Article  PubMed  Google Scholar 

  • Fernando LCP, Waidhyarathne KP, Pereira KFG, De Silva PHPR (2010) Evidence for suppressing coconut mite, Aceria guerreronis by inundative release of the predatory mites Neoseiulus baraki. Biol Control 53:108–111

    Article  Google Scholar 

  • Ferrero M, Moraes GJ, Kreiter S, Tixier M-S, Knap M (2007) Life tables of Phytoseiulus persimilis feeding on Tetranychus evansi at four temperatures (Acari: Phytoseiidae, Tetranychidae). Exp Appl Acarol 41:4–53

    Article  Google Scholar 

  • Flaherty DL, Huffaker CB (1970) Biological control of Pacific mites and Willamette mites in San Joaquin Valley vineyards. 1. Role of Metaseiulus occidentalis. II. Influence of dispersion patterns of Metaseiulus occidentalis. Hilgardia 40:267–330

    Google Scholar 

  • Flechtmann CHW, McMurtry JA (1992) Studies on how phytoseiid mites feed on spider mites and pollen. Int J Acarol 18:157–162

    Article  Google Scholar 

  • Furtado IP, Moraes GJ, Kreiter S, Knapp M (2006) Search for effective natural enemies of Tetranychus evansi in south and southeast Brazil. Exp Appl Acarol 40:157–174

    Article  PubMed  Google Scholar 

  • Galvão AS, Melo JWS, Monteiro VK, Lima DB, Moraes GJ, Gondim MGC (2012) Dispersal strategies of Aceria guerreronis (Acari: Eriophyidae), a coconut pest. Exp Appl Acarol 57:1–13

    Article  PubMed  Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Publishing, Oxford, p 539

    Book  Google Scholar 

  • Hokkanen HMT, Pimentel D (1989) New associations in biological control—theory and practice. Can Entomol 121:829–840

    Article  Google Scholar 

  • Hoy MA, Cave FE (1979) Parahaploidy of the arrhenotokous predator, Metaseiulus occidentalis (Acari: Phytoseiidae), demonstrated by X-irradiation of males. Entomol Exp Appl 26:97–104

    Article  Google Scholar 

  • Hoy MA, Groot JJR, Baan HE (1985) Influence of aerial dispersal on persistence and spread of pesticide-resistant Metaseiulus occidentalis in California almond orchards. Entomol Exp Appl 37:17–31

    Article  Google Scholar 

  • Hoyt SC (1969) Population studies of five mite species on apple in Washington. In: Evans GO (ed) Proceedings of 2nd international congress of acarology. Akademiai Kiado, Budapest, Canberra, pp 117–133

    Google Scholar 

  • Huffaker CB, van de Vrie M, McMurtry JA (1969) The ecology of tetranychid mites and their natural control. Annu Rev Entomol 14:125–174

    Article  Google Scholar 

  • Huffaker CB, van de Vrie M, McMurtry JA (1970) Ecology of tetranychid mites and their natural enemies: a review. II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia 40:391–458

    Article  Google Scholar 

  • Hussey NW, Parr WJ, Gould HJ (1965) Observations on the control of Tetranychus urticae Koch on cucumbers by the predatory mite Phytoseiulus riegeli Dosse. Entomol Exp Appl 8:271–281

    Article  Google Scholar 

  • Johnson DT, Croft BA (1976) Laboratory study of the dispersal behavior of Amblyseius fallacis (Acarina: Phytoseiidae). Ann Entomol Soc Am 69:1019–1023

    Article  Google Scholar 

  • Koch CL (1839) Deutschlands Custaceen, Myriapode und Arachniden. Regensburg, 5–6(25), 22:5–6(27), 6, 13

    Google Scholar 

  • Kostiainen T, Hoy MA (1994) Genetic improvement of Amblyseius finlandicus (Acari: Phytoseiidae): laboratory selection for resistance to azinphosmethyl and dimetoathe. Exp Appl Acarol 18:469–484

    Article  Google Scholar 

  • Krantz G, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech Univ Press, Texas, p 807

    Google Scholar 

  • Lawson-Balagbo ML, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2007a) Life history of the predatory mites Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidates for biological control of Aceria guerreronis. Exp Appl Acarol 34:49–61

    Article  Google Scholar 

  • Lawson-Balagbo ML, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2007b) Refuge used by the coconut mite Aceria guerreronis: fine scale distribution and association with other mites under the perianth. Biol Control 43:102–110

    Article  Google Scholar 

  • Lesna I, Da Silva FR, Sato Y, Sabelis MW, Lommen STE (2014) Neoseiulus paspalivorus, a predator from coconut, as a candidate for controlling dry bulb mites infesting stored tulip bulbs. Exp Appl Acarol 63:189–204

    PubMed  Google Scholar 

  • Lindquist EE, Krantz GW, Walter DE (2009) Order Mesostigmata. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 124–232

    Google Scholar 

  • McMurtry JA (1982) The use of phytoseiids for biological control: progress and future prospects. In: Hoy MA (ed) Recent advances in knowledge of the Phytoseiidae. Division of Agricultural Science, University of California, Berkeley, pp 23–48

    Google Scholar 

  • McMurtry JA (2010) Concepts of classification of the Phytoseiidae: relevance to biological control. In: Sabelis MW, Bruin J (eds) Trends in acarology: proceeding of 12th international congress. Springer, New York, pp 393–397

    Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • McMurtry JA, Scriven GT (1968) Studies on predator-prey interactions between Amblyseius hibisci and Oligonychus punicae: effects of host-plant conditioning and limited quantities of an alternative food. Ann Entomol Soc Am 61:393–397

    Article  Google Scholar 

  • McMurtry JA, Scriven GT (1971) Predation by Amblyseius limonicus on Oligonychus punicae: effects of initial predator-prey ratios and prey distribution. Ann Entomol Soc Am 64:219–224

    Article  Google Scholar 

  • McMurtry JA, Show ED (2012) Phytoseiids on blackberry in Central California. Syst Appl Acarol 17:384–387

    Google Scholar 

  • McMurtry JA, Oatman ER, Phillips PH, Wood CW (1978) Establishment of Phytoseiulus persimilis (Acari: Phytoseiidae) in southern California. Entomophaga 23:175–179

    Article  Google Scholar 

  • McMurtry JA, Scriven GT, Newbeger SN, Johnson HG (1991) Methodologies of rearing, introducing and establishing Phytoseiid mites. Proceedings of 1989 ADAP crop protection conference, University Hawaii, Honolulu, Hawaii, pp 104–110

    Google Scholar 

  • McMurtry JA, Moraes GJ, Johnson HG (1992) Studies of the impact of Euseius species (Acari: Phytoseiidae) on citrus mites using predator exclusion and predator release experiments. Exp Appl Acarol 15:233–248

    Article  Google Scholar 

  • McMurtry JA, Moraes GJ, Famah Sourassou N (2013) Revision of lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

    Article  Google Scholar 

  • Melo JWS, Lima DB, Sabelis MW, Pallini A, Gondim MGC (2014) Limits to ambulatory displacement of coconut mites in absence and presence of food related-cues. Exp Appl Acarol 62:449–462

    Article  CAS  PubMed  Google Scholar 

  • Montserrat M, de la Peña F, Hormaza JI, González-Fernández JJ (2008) How do Neoseiulus californicus (Acari: Phytoseiidae) females penetrate densely webbed spider mite nests? Exp Appl Acarol 44:101–106

    Article  CAS  PubMed  Google Scholar 

  • Moraes GJ, McMurtry JA, Denmark HA, Campos CB (1986) A catalog of the mite family Phytoseiidae: references to taxonomy, synonymy, distribution and habitat. EMBREPA-DDT, Brasilia, p 353

    Google Scholar 

  • Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494

    Google Scholar 

  • Moraes GJ, de Castro TMMG, Kreiter S, Quilict S, Gondim MGC, de Sá LAN (2012) Search for natural enemies de Raoiella indica Hurst in Réunion Island (Indian Ocean). Acarologia 52:129–134

    Article  Google Scholar 

  • Navajas M, Moraes GJ, Pigeon PAA (2012) Revision of the invasion of Tetranychus evansi, biology, colonization pathways, potential expansion and prospective for biological control. Exp Appl Acarol 59:43–65

    Article  PubMed  Google Scholar 

  • Navia D, Gondim MG Jr, Aratchige NS, Moraes GJ (2013) A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae) a major tropical mite pest. Exp Appl Acarol 59:67–94

    Article  PubMed  Google Scholar 

  • Negloh K, Hanna R, Schausberger P (2008) Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biol Control 46:523–531

    Article  Google Scholar 

  • Nelson-Rees WA, Hoy MA, Roush RT (1980) Heterochromatinization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma 77:263–276

    Article  CAS  PubMed  Google Scholar 

  • Nyrop JP (1988) Spatial dynamics of an acarine predatory-prey system: Typhlodromus pyri (Acari: Phytoseiidae) preying on Panonychus ulmi (Acari: Tetranychidae). Environ Entomol 17:1019–1031

    Article  Google Scholar 

  • Oatman ER, McMurtry JA (1966) Biological control of the two-spotted spider mite on strawberry in southern California. J Econ Entomol 59:433–439

    Article  Google Scholar 

  • Oatman ER, McMurtry JA, Gilstrap FE, Voth V (1977) Effect of Amblyseius californicus, Phytoseiulus persimilis and Typhlodromus occidentalis on the two spotted spider mite on strawberry in southern California. J Econ Entomol 70:45–47

    Article  Google Scholar 

  • Overmeer WPJ (1985) Diapause. In: Helle W, Sabelis MW (eds) Spider mites; their biology, natural enemies and control, vol IB. Elsevier, Amsterdam, pp 95–102

    Google Scholar 

  • Pickett CH, Gilstrap FE, Morrison RK, Bouse LF (1987) Release of predatory mites (Acari: Phytoseiidae) by aircraft for the biological control of the spider mites (Acari: Tetranychidae) infesting corn. J Econ Entomol 80:906–910

    Article  Google Scholar 

  • Roush RT, Hoy MA (1981) Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. J Econ Entomol 74:138–141

    Article  Google Scholar 

  • Sabelis MW (1985) Development. In: Helle W, Sabelis MW (eds) Spider mites; their biology, natural enemies and control, vol IB. Elsevier, Amsterdam, pp 43–53

    Google Scholar 

  • Sabelis MW, Dicke M (1985) Long-range dispersal and searching behaviour. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1B, World crop pests. Elsevier, Amsterdam, pp 141–160

    Google Scholar 

  • Schausberger P (2003) Cannibalism among phytoseiid mites: a review. Exp Appl Acarol 29:173–191

    Article  PubMed  Google Scholar 

  • Schausberger P, Croft B (2000) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725

    Article  CAS  PubMed  Google Scholar 

  • Scriven GT, McMurtry JA (1971) Quantitative production and processing of tetranychid mites for large-scale testing of predator production. J Econ Entomol 64:1255–1257

    Article  Google Scholar 

  • Shimoda T, Kishimoto H, Takabayashi J, Amano H, Dicke M (2009) Comparison of thread-cutting behavior in three specialist predatory mites to cope with complex webs of Tetranychus spider mites. Exp Appl Acarol 47:111–120

    Article  PubMed  Google Scholar 

  • Silva FR, Moraes GJ, Gondim MGC Jr, Knapp M, Rouam SL, Paes JLA, Oliveira GM (2010) Efficiency of Phytoseiulus longipes Evans as a control agent of Tetranychus evansi Baker and Pritchard (Acari: Phytoseiidae: Tetranychidae) on screenhouse tomatoes. Neotrop Entomol 39:991–995

    Article  PubMed  Google Scholar 

  • Takano-Lee M, Hoddle MS (2001) Predatory biological control of Oligonychus perseae (Acari: Tetranychidae) on avocado: IV. Evaluating the efficacy of a modified mistblower to mechanically dispense Neoseiulus californicus (Acari: Phytoseiidae). Int J Acarol 27:157–169

    Article  Google Scholar 

  • Tixier MS, Kreiter S, Douin M, Moraes GJ (2012) Rates of description of Phytoseiidae mite species (Acari: Mesostigmata): space, time and body size variations. Biodivers Conserv 21:993–1013

    Article  Google Scholar 

  • Vinson SB (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–131

    Article  Google Scholar 

  • Yaninek S (2007) Biological control of the cassava green mite in Africa: overcoming challenges to implementations. In: Vincent C, Goethel MS, Lazaorvits G (eds) Biological control: a global perspective. CABI Publishing, Wallingford, pp 28–37

    Chapter  Google Scholar 

  • Yaninek JS, Hanna R (2003) Cassava green mite in Africa: a unique example of successful classical biological control of a mite pest on a continental scale. In: Neuenschwander P, Borgemeister C, Langewald L (eds) Biological control in IPM systems in Africa. CABI Publishing, Wallingford, pp 61–75

    Google Scholar 

  • Zannou I, Hanna R, Moraes JG, Kreiter S (2005) Cannibalism and interspecific predation in a phytoseiid predator guild from cassava field in Africa: evidence from the laboratory. Exp Appl Acarol 37:27–42

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are due to Prof. Dr. Gilberto J. de Moraes (ESALQ-USP, Piracicaba, São Paulo, Brazil) for his numerous comments and suggestions in the preparation of this chapter. Peterson R. Demite and N. Famah Sourassou are FAPESP Postdoctoral fellows (Process # 2011/08941-3 and 2012/21422-2, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. McMurtry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McMurtry, J.A., Sourassou, N.F., Demite, P.R. (2015). The Phytoseiidae (Acari: Mesostigmata) as Biological Control Agents. In: Carrillo, D., de Moraes, G., Peña, J. (eds) Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms. Progress in Biological Control, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-15042-0_5

Download citation

Publish with us

Policies and ethics