Skip to main content

Efficiencies and Energy Balance in High-Concentrator Photovoltaic Devices

  • Chapter
  • First Online:
High Concentrator Photovoltaics

Abstract

Actual and forecast high-concentrator photovoltaic (HCPV) systems efficiencies may provide a scenario where HCPV represents a potential alternative to flat PV technology. The present status of HCPV efficiencies will be studied, and, on this basis, future trends regarding HCPV cells, modules, and systems efficiencies will be forecast. It will be shown that HCPV technology represents a real alternative to the current PV systems. Guidelines and normalized documents are needed to assess the overall performance of HCPV systems and to provide a general assessment of the potential of HCPV technology. The International Standard IEC 61724 publication, Photovoltaic System Performance Monitoring—Guidelines for Measurement Data Exchange and Analysis, will be highlighted. Because these guidelines are specially addressed to flat-PV technology, some suggestions, especially those adapted to the particularities of HCPV systems on both monitored and derived parameters, will be covered. Moreover, different indices of performance and losses that intend to provide comparisons between different HCPV installations will be offered adapted to the HCPV idiosyncrasy. These comparisons may be extremely useful when it comes to optimizing HCPV installation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almonacid F et al (2013) Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an artificial neural network. Energy 53:165–172

    Article  Google Scholar 

  2. Almonacid F, Pérez-Higueras PJ, Fernández EF, Rodrigo P (2012) Relation between the cell temperature of a HCPV module and atmospheric parameters. Solar Energy Mater Sol Cells 105:322–327

    Google Scholar 

  3. ASTM (2009) ASTM E 2527. Standard test method for electrical performance of concentrator terrestrial photovoltaic modules and systems under natural sunlight. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  4. Bett A (2014) High-efficiency—a key for CPV. CPV-10, 10th international conference on concentrator photovoltaic systems. Albuquerque, USA

    Google Scholar 

  5. Bett A, Dimroth F, Siefer G (2007) Multijunction concentrator solar cells. In: Luque A, Andreev V (eds) Concentrator photovoltaics. Springer, Berlin, pp 67–87

    Google Scholar 

  6. Chan N, Brindley H, Ekins-Daukes N (2014) Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy. Prog Photovolt Res Appl 22(10):1080–1095

    Article  Google Scholar 

  7. Chan N et al (2013) Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan. Prog Photovolt Res Appl 21:1598–1610

    Article  Google Scholar 

  8. Commission of the European Communities: Photovoltaic System Monitoring (1997) Guidelines for the assesement of photovoltaic plants, documents A&B, version 4.3

    Google Scholar 

  9. Dimroth F et al (2014) Wafer bonded four-juntion GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7 % efficiency. Prog Photovolt Res Appl 22(3):277–282

    Article  Google Scholar 

  10. Domínguez C, Antón I, Sala G, Askins S (2013) Current-matching estimation for multijunction cells within a CPV module by means of component cells. Prog Photovolt Res Appl 21:1478–1488

    Article  Google Scholar 

  11. Fernández EF, Almonacid F, Micheli L, Mallick T (2014) Comparison of methods for estimating the solar cell temperature and their influence in the calculation of the electrical parameters in a HCPV module. AIP Conf Proc 183–186:1616

    Google Scholar 

  12. Fernández EF et al (2013) A two subcell equivalent solar cell model for III–V triple junction solar cells under spectrum and temperature variations. Sol Energy 92:221–229

    Google Scholar 

  13. Fernandez E, Almonacid F, Rodrigo P, Perez-Higueras P (2013) Model for the prediction of the maximum power of a high concentrator photovoltaic module. Sol Energy 97:12–18

    Article  Google Scholar 

  14. Fernández E, Almonacid F, Rodrigo P, Pérez-Higueras P (2014) Calculation of the cell temperatura of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods. Sol Energy Mater Sol Cells 121:144–151

    Article  Google Scholar 

  15. Fernández E, Almonacid F, Ruiz-Arias J, Soria-Moya A (2014) Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol Energy Mater Sol Cells 127:179–187

    Article  Google Scholar 

  16. Fernandez EF, Almonacid F, Mallick KT, Perez-Higueras P (2015) Analytical modelling of high concentrator photovoltaic modules based on atmospheric parameters. Int J Photoenergy 2015:8

    Google Scholar 

  17. Fernández EF, Rodrigo P, Almonacid F, Pérez-Higueras P (2014) A method for estimating cell temperature at the maximum power point of a HCPV module under actual operating conditions. Energy Mater Sol Cells 124:159–165

    Article  Google Scholar 

  18. Fernandez E et al (2013) Calculation of cell temperature in a HCPV module using Voc. In: Proceedings of the 2013 Spanish conference on electron devices, CDE, 2013, art no 6481406

    Google Scholar 

  19. García-Domingo B, Aguilera J, de la Casa JFM (2014) Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (concentrated photovoltaic) module. Energy 70:239–250

    Article  Google Scholar 

  20. Green MA et al (2014) Solar cell efficiencies tables (version 43). Prog Photovolt Res Appl 22:1–9

    Article  Google Scholar 

  21. GTM Research (2011) CPV consortium

    Google Scholar 

  22. Gueymard C (2001) Parameterized transmítance model for direct beam and circumsolar spectral irradiance. Sol Energy 71(5):325–346

    Article  Google Scholar 

  23. Haberlin H (2012) Photvoltaics. System design and practice. Wiley, West Sussex

    Book  Google Scholar 

  24. Henry C (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51(13):4494–4500

    Article  Google Scholar 

  25. Hornung TS (2012) Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system. Sol Energy Mater Sol Cells 99:333–338

    Google Scholar 

  26. IEC (1998) International standard IEC 61724: photovoltaic system performance monitoring—guidelines for measurement, data exchange and analysis, 1st edn, Geneve

    Google Scholar 

  27. IEC (2011) IEC60904-5, photovoltaics devices—part 5: determination of the equivalent cell temperature (ECT) of photovoltaic (PV) devices by the open-circuit voltage method

    Google Scholar 

  28. IEC (2012) IEC 62670-1. Concentrator photovoltaic (CPV) module and assembly performance testing-standard conditions

    Google Scholar 

  29. ISO (1990). ISO 9060: specification and classification of instruments for measuring hemispherical solar and direct solar radiation, Geneva

    Google Scholar 

  30. Ju X et al (2013) An improved temperature estimation method for solar cells operating at high concentrations. Sol Energy 93:80–89

    Article  Google Scholar 

  31. King D, Boyson W, Kratochvil J (2004) SAND2004-3535. Photovoltaic array performance model. Sandia National Laboratories, Albuquerque

    Google Scholar 

  32. Kurtz S, Muller M, Marion, B, Emery K (2010) Considerations for how to rate CPV. In: Proceedings 6th international conference on concentrating photovoltaic systems (CPV 6), Freiburg

    Google Scholar 

  33. Kurtz S et al (2008) A comparison of theoretical efficiencies of multi-junction concentrator solar cells. Prog Photovolt Res Appl 16:537–546

    Article  Google Scholar 

  34. Landsberg PT, Markvart T (2003) Ideal efficiencies. Practical handbook of photovoltaics. Elsevier, UK, pp 124–134

    Google Scholar 

  35. Martí A, Araújo GL (1996) Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol Energy Mater Sol Cells 43:203–222

    Article  Google Scholar 

  36. McMahon W et al (2008) Fill factor as a probe of current-matching for GaInP2/GaAs tandem cells in a concentrator system during outdoor operation. Prog Photovolt Res Appl 16(3):213–224

    Article  Google Scholar 

  37. Muller M et al (2011) Determining outdoor CPV cell temperature. In: AIP conference proceedings, pp 331–335

    Google Scholar 

  38. Muller M, Marion B, Kurtz S, Rodriguez J (2010) An investigation into spectral parameters as they impact CPV module performance. AIP conference proceedings, Freiburg, pp 307–311

    Google Scholar 

  39. Muñoz FJ, Almonacid G, Nofuentes G, Almonacid F (2006) New method based on charge parameters to analyze the performance of stand-alone photovoltaic systems. Sol Energy Mater Sol Cells 90:1750–1763

    Article  Google Scholar 

  40. NREL (2014) National Center for Photovoltaics. [Online] available at: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed 15 May 2014

  41. Peharz G, Ferrer Rodríguez J, Siefer G, Bett A (2011) A method for using CPV modules as temperature sensors and its application to rating procedures. Sol Energy Mater Sol Cells 95:2734–2744

    Article  Google Scholar 

  42. Peharz G, Siefer G, Bett AW (2009) A simple method for quantifying spectral impacts on multi-junction solar cells. Sol Energy 83(9):1588–1598

    Article  Google Scholar 

  43. Pérez-Higueras P, Muñoz-Cerón E, Almonacid G, Vidal P (2011) High concentrator photovoltaics efficiencies: present status and forecast. Renew Sustain Energy Rev 15:1810–1815

    Article  Google Scholar 

  44. Philipps S et al (2010) Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions. Sol Energy Mater Sol Cells 94:869–877

    Article  Google Scholar 

  45. Rivera A, García-Domingo B, del Jesús M, Aguilera J 2013. Characterization of concentrating photovoltaic modules by cooperative competitive radial basis function networks. Expert Syst Appl 40:1599–608

    Google Scholar 

  46. Rodrigo P, Fernández E, Almonacid F, Pérez-Higuera P (2013) Models for the electrical characterization of high concentration photovoltaic cells and modules: a review. Renew Sustain Energy Rev 26:752–760

    Article  Google Scholar 

  47. Rodrigo P, Fernández E, Almonacid F, Pérez-Higueras P (2014) Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 38:478–488

    Article  Google Scholar 

  48. Rubio F et al (2008) Deploying HCPV powerplant—ISFOC experiences. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, PVSC’08, San Diego

    Google Scholar 

  49. Siefer G, Bett AW (2014) Analysis of temperature coefficients for III–V multijunction junction concentrator cells. Prog Photovolt Res Appl 22:515–524

    Article  Google Scholar 

  50. Sinke W, Bett A et al (2011) A strategic research agenda for photovoltaic solar energy technology, 2nd edn

    Google Scholar 

  51. Steiner M et al (2014) YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules. Prog Photovolt Res Appl. doi:10.1002/pip.2458

  52. Stoffel T, Renné D, Myers D, Wilcox S (2010) Concentrating solar power. Best practices handbook for the collection and use of solar resource data. National renewable energy laboratory. Technical report NREL/TP-550-47465

    Google Scholar 

  53. Tobías I, Luque A (2002) Ideal efficiency of monolithic, series-connected multijunction solar cells. Prog Photovolt Res Appl 10:323–329

    Article  Google Scholar 

  54. WMO (2008) WMO guide to meteorological instruments and methods of observation, WMO-no 8, 7th edn, Geneve

    Google Scholar 

  55. Yandt MD et al (2012) Estimating cell temperature in a concentrating photovoltaic system. In AIP conference proceedings, pp-172–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Muñoz-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muñoz-Rodríguez, F.J., Muñoz-Cerón, E., Almonacid, F., Fernández, E.F. (2015). Efficiencies and Energy Balance in High-Concentrator Photovoltaic Devices. In: Pérez-Higueras, P., Fernández, E. (eds) High Concentrator Photovoltaics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15039-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15039-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15038-3

  • Online ISBN: 978-3-319-15039-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics