Skip to main content

Multijunction Concentrator Solar Cells: Analysis and Fundamentals

  • Chapter
  • First Online:
High Concentrator Photovoltaics

Abstract

Multijunction (MJ) concentrator solar cells are primarily constructed of III-V semiconductor materials. The high solar-conversion efficiencies of these devices are dependent on precise control of growth conditions using one of several techniques such as molecular beam epitaxy, metal organic chemical vapour, or metal organic vapour-phase epitaxy deposition. The use of several junctions in an MJ tandem stack allows these devices to achieve efficiencies that are not possible for single-junction devices. Their behaviour is consequently complex, but it can be understood through an examination of the external quantum efficiency and the temperature dependence of each cell in the stack. This chapter lays out a systematic approach for understanding the spectral and temperature dependence of the overall MJ device by way of consideration of its component subcells. The efficiency of the cell as a function of temperature and concentration is described for both lattice-matched and metamorphic triple-junction (TJ) solar cells. The electrical characteristics and current–voltage curves are described from these considerations, and the performance of MJ solar cells under real operating conditions are then presented by considering a term describing the overall thermal factor and another term for the spectral factor. These terms can be understood from the background presented in the previous sections. Finally, the power output for the complete cell incorporated into a Fresnel lens‒based high-concentration photovoltaic system is presented for a particular geographic location using meteorological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philipps S, Dimroth F, Bett A (2013) In: McEvoy A, Castañer L, Markvart T (eds) Solar cells: materials, manufacture and operation. Elsevier, Amsterdam, p 353

    Google Scholar 

  2. Bailey S, Raffaelle R (2012) In: McEvoy AMT, Castañer L (eds) Practical handbook of photovoltaics fundamentals and applications. Elsevier, Boston, p 863

    Google Scholar 

  3. Algora C In: Luque A, Andreev V (eds) Concentrator photovoltaics. Springer, Berlin, p 89

    Google Scholar 

  4. Olson J, Friedman D, S Kurtz (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, New York, p 359

    Google Scholar 

  5. Fraas L (2014) Low-cost solar electric power. Springer, Cham, p 97

    Google Scholar 

  6. Kurtz S, Geisz J (2010) Multijunction solar cells for conversion of concentrated sunlight to electricity. Opt Express 18(9):A73–A78

    Article  Google Scholar 

  7. King R, Shusari D, Larrabee D, Liu X-Q, Rehder E, Edmond-son K, Cotal H, Jones R, Ermer J, Fetzer C, Law D, Karam N (2012) Solar cell generations over 40 % efficiency. Prog Photovolt Res Appl 20:801–815

    Google Scholar 

  8. Tanabe K (2009) A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies 2:504–530

    Article  Google Scholar 

  9. Wilt D, Stan M (2012) High efficiency multijunction photovoltaic development. Ind Eng Chem Res 51(37):11931–11940

    Article  Google Scholar 

  10. Landsberg P, Markvart T (2013) In: McEvoy A, Castañer L, Markvart T (eds) Solar cells: materials, manufacture and operation. Elsevier, Amsterdam, p 55

    Google Scholar 

  11. de Vos A (1992) Endoreversible thermodynamics of solar energy con-version. Oxford University Press, New York, p 120

    Google Scholar 

  12. Smestad G, Ries H (1992) Luminescence and current-voltage characteristics of solar cells and optoelectronic devices. Sol Energy Mater Sol Cells 25:51–71

    Article  Google Scholar 

  13. Smestad G (2002) Optoelectronics of Solar Cells. SPIE, Bellingham, p 57

    Book  Google Scholar 

  14. Tobin S, Vernon S, Bajgar C, Wojtczuk SJ, Melloch M, Keshavarzi A, Stellwag T, Venkatensan S, Lundstrom M, Emery K (1990) Assessment of MOCVD and MBE growth GaAs for high-efficiency solar cell applications. IEEE Trans Electron Devices 37(2):469–477

    Article  Google Scholar 

  15. Ptak A, Johnston S, Kurtz S, Friedman D, Metzger W (2003) A comparison of MBE- and MOCVD-grown GaInNAs. J Cryst Growth 251(1–4):392–398

    Article  Google Scholar 

  16. Bett A, Adelhelm R, Agert C, Beckert R, Dimroth F, Schubert U (2001) Advanced III-V solar cell structures grown by MOVPE. Sol Energy Mater Sol Cells 66(1–4):541–550

    Article  Google Scholar 

  17. Jackrel D, Bank S, Yuen H, Wistey M, Harris J, Ptak A, Johnston S, Friedman D, Kurtz S (2007) Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy. J Appl Phys 101(11):114916

    Google Scholar 

  18. Malik R (1989) III-V semiconductor materials and devices. Elsevier, Amsterdam

    Google Scholar 

  19. Simon MS, Kwok KN (2006) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  20. Levinshtein ME, Rumyantsev SL, Shur MS (2001) Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe. Wiley, New York

    Google Scholar 

  21. Green M (2003) Third generation photovoltaics. Springer, Berlin

    Google Scholar 

  22. Mokkapati S, Jagadish C (2009) III-V compound SC for optoelectronic devices. Mater Today 12(4):22–32

    Article  Google Scholar 

  23. Washburn J, Kvam EP, Liliental-Weber Z (1991) Defect formation in epitaxial crystal growth. J Electron Mater 20(2):155–161

    Article  Google Scholar 

  24. Cohen M, Bergstresser T (1966) Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys Rev 141(2):789–796

    Article  Google Scholar 

  25. Yamaguchi M, Takamoto T, Araki K, Ekins-Daukes N (2005) Multi-junction III-V solar cells: current status and future potential. Sol Energy 79(1):78–85

    Article  Google Scholar 

  26. Dimroth F (2006) High-efficiency solar cells from III-V compound semiconductors. Physica Status Solidi C: Conf 3(3):373–379

    Article  Google Scholar 

  27. King R, Bhusari D, Larrabee D, Liu X-Q, Rehder E, Edmondson K, Cotal H, Jones R, Ermer J, Fetzer C, Law D, Karam N (2012) Solar cell generations over 40% efficiency. Prog Photovolt Res Appl 20(6):801–815

    Article  Google Scholar 

  28. Walker A, Thériault O, Wilkins M, Wheeldon J, Hinzer K (2013) Tunnel-junction-limited multijunction solar cell performance over concentration. IEEE J Sel Topics Quantum Electron 19(5):1–8

    Article  Google Scholar 

  29. Guter W, Schöne J, Philipps S, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A, Dimroth F (2009) Current-matched triple-junction solar cell reaching 41.1 % conversion efficiency under concentrated sunlight. Appl Phys Lett 54(22)

    Google Scholar 

  30. ASTM G 173-03e1 (2012) Standard tables for reference solar spectral irradiance: direct normal and hemispherical on 37 tilted surface

    Google Scholar 

  31. Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoon H, Karam N (2009) III-V multijunction solar cells for concentrating photovoltaics. Energy Environ Sci 2(2):174–192

    Article  Google Scholar 

  32. García I, Rey-Stolle I, Galiana B, Algora C (2009) A 32.6 % efficient lattice-matched dual-junction solar cell working at 1000 suns. Appl Phys Lett 94(5):0535509

    Google Scholar 

  33. Araki K, Yamaguchi M, Kondo M, Uozumi H (2003) Which is the best number of junctions for solar cells under ever-changing terrestrial spectrum? In: 3rd World conference on photovoltaic energy conversion, pp 307–312

    Google Scholar 

  34. Yoon H, Haddad M, Mesropian S, Yen J, Edmondson K, Law D, King R, Bhusari D, Boca A, Karam N (2008) Progress of inverted metamorphic III-V solar cell development at Spectrolab. In: 33rd IEEE photovoltaic specialists conference

    Google Scholar 

  35. Geisz J, Kurtz S, Wanlass M, Ward J, Duda A, Friedman D, Olson J, McMahon W, Moriarty T, Kiehl J (2007) High-efficiency GaInPGaAsInGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl Phys Lett 91(2):023502–023502

    Google Scholar 

  36. Geisz J, Friedman D, Ward J, Duda A, Olavarria W, Moriarty T, Kiehl J, Romero M, Norman A, Jones K (2008) 40.8 % efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl Phys Lett 93(12):123505

    Google Scholar 

  37. King R, Law D, Edmondson K, Fetzer C, Kinsey G, Yoon H, Krut D, Ermer J, Sherif R, Karam N (2007) Advances in high-efficiency III-V multijunction solar cells. Adv OptoElectron

    Google Scholar 

  38. Tanabe K, Fontcuberta i Morral A, Atwater H, Aiken D, Wanlass M (2006) Direct-bonded GaAs/InGaAs tandem solar cell. Phys Lett 89(10):102106

    Google Scholar 

  39. Derendorf K, Essig S, Oliva E, Klinger V, Roesener T, Philipps S, Benick J, Hermle M, Schachtner M, Siefer G, Jäger W, Dimroth F (2013) Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE J Photovolt 3(4):1–6

    Google Scholar 

  40. Häussler D, Houben L, Essig S, Kurttepeli M, Dimroth F, Dunin-Borkowski R, Jäger W (2013) Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells. Ultramicroscopy 134:55–61

    Article  Google Scholar 

  41. Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits T, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T (2014) Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7 % efficiency”. Prog Photovolt Res Appl 22(3):277–282

    Article  Google Scholar 

  42. Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149–154

    Article  Google Scholar 

  43. Aiken D, Stan M, Murray C, Sharps P, Hills J, Clevenger B (2002) Temperature dependent spectral response measurements for III-V multi-junction solar cells. In: 29th conference record of the IEEE photovoltaic specialists conference

    Google Scholar 

  44. Helmers H, Schachtner M, Bett A (2013) Influence of temperature and irradiance on triple-junction solar subcells. Sol Energy Mater Sol Cells 116:144–152

    Article  Google Scholar 

  45. Braun A, Katz EGJ (2013) Basic aspects of the temperature coefficients of concentrator solar cell performance parameters. Prog Photovolt Res Appl 21(5):1087–1094

    Google Scholar 

  46. Domínguez C, Antón I, Sala G (2010) Multijunction solar cell model for translating I-V characteristics as a function of irradiance, spectrum, and cell temperature. Prog Photovolt Res Appl 18(4):272–284

    Google Scholar 

  47. Friedman D (1996) Modelling of tandem cell temperature coefficients. In: 25th conference record of the IEEE photovoltaic specialists conference

    Google Scholar 

  48. Meusel M, Baur C, Létay G, Bett A, Warta W, Fernandez E (2003) Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Prog Photovolt Res Appl 11(8):499–514

    Article  Google Scholar 

  49. Fernández E, Loureiro A, Higueras P, Siefer G (2011) Monolithic III-V triple-junction solar cells under different temperatures and spectra. In: Proceedings of the 8th spanish conference on electron devices, CDE’2011, Art no 5744222

    Google Scholar 

  50. Baudrit M, Algora C (2008) Modeling of GaInP/GaAs dual-junction solar cells including tunnel junction. In: 33rd IEEE photovoltaic specialists conference

    Google Scholar 

  51. Siefer G, Baur C, Bett A (2010) External quantum efficiency measurements of Germanium bottom subcells: measurement artifacts and correction procedures. In: 35th IEEE Photovoltaic Specialists Conference

    Google Scholar 

  52. Faine P, Kurtz S, Riordan C, Olson J (1991) The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells. Solar Cells 31(3):259–278

    Article  Google Scholar 

  53. Domínguez C, Anton I, Sala G, Askins S (2013) Current-matching estimation for multijunction cells within a CPV module by means of component cells. Prog Photovolt Res Appl 21(7):1478–1488

    Article  Google Scholar 

  54. McMahon W, Emery K, Friedman D, Ottoson L, Young M, Ward J, Kramer C, Duda A, Kurtz S (2008) Fill factor as a probe of current-matching for GaInP/GaAs tandem cells in a concentrator system during outdoor operation. Prog Photovolt Res Appl 16(3):213–224

    Article  Google Scholar 

  55. Fernández E, Siefer G, Almonacid F, Loureiro A, Pérez-Higueras P (2013) A two subcell equivalent solar cell model for III-V triple junction solar cells under spectrum and temperature variations. Sol Energy 92:221–229

    Article  Google Scholar 

  56. Meusel M, Adelhelm R, Dimroth F, Bett A, Warta W (2002) Spectral mismatch correction and spectrometric characterization of monolithic III-V multi-junction solar cells. Prog Photovolt Res Appl 10(4):243–255

    Article  Google Scholar 

  57. Siefer G, Bett A (2014) Analysis of temperature coefficients for III-V multijunction concentrator cells. Prog Photovolt Res Appl 22(5):515–524

    Article  Google Scholar 

  58. Kinsey G, Hebert P, Barbour K, Krut D, Cotal H, Sherif R (2008) Concentrator multifunction solar cell characteristics under variable intensity and temperature. Prog Photovolt Res Appl 16(6):503–508

    Article  Google Scholar 

  59. Segev G, Mittelman G, Kribus A (2012) Equivalent circuit models for triple-junction concentrator solar cells. Sol Energy Mater Sol Cells 98:57–65

    Article  Google Scholar 

  60. Braun A, Hirsch B, Vossier A, Katz E, Gordon J (2013) Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance. Prog Photovolt Res Appl 21(2):202–208

    Article  Google Scholar 

  61. Fernández E, Siefer G, Schachtner M, García Loureiro A, Pérez-Higueras P (2012) Temperature coefficients of monolithic III-V triple-junction solar cells under different spectra and irradiance levels. AIP Conf Proc 1477:189–193

    Google Scholar 

  62. Siefer G, Baur C, Meusel M, Dimroth F, Bett A, Warta W (2002) Influence of the simulator spectrum on the calibration of multi-junction solar cells under concentration. In: 29th IEEE photovoltaic specialists conference

    Google Scholar 

  63. Guter W, Bett A (2006) I-V characterization of tunnel diodes and multijunction solar cells. IEEE Trans Electron Devices 53(9):2216–2222

    Article  Google Scholar 

  64. Ben Or A, Appelbaum J (2014) Dependence of multi-junction solar cells parameters on concentration and temperature. Solar Energy Mater Solar Cells 130:234–240

    Google Scholar 

  65. Karcher C, Helmers H, Schachtner M, Dimroth F, Bett A (2014) Temperature-dependent electroluminescence and voltages of multi-junction solar cells. Prog Photovolt Res Appl 22(7):757–763

    Google Scholar 

  66. Wanlass M, Emery K, Gessert T, Horner G, Osterwald C, Coutts T (1989) Practical considerations in tandem cell modeling. Solar Cells 27(1–4):191–204

    Article  Google Scholar 

  67. Ben Or A, Appelbaum J (2013) Estimation of multi-junction solar cell parameters. Prog Photovolt Res Appl 21(4):713–723

    Google Scholar 

  68. Ben Or A, Appelbaum J (2013) Performance analysis of concentrator photovoltaic dense-arrays under non-uniform irradiance. Solar Energy Mater Solar Cells 117:110–119

    Google Scholar 

  69. Reinhardt K, Lewis B, Kreifels T (2000) Multijunction solar cell iso-junction dark current study. In 28th IEEE photovoltaic specialists conference

    Google Scholar 

  70. Nishioka K, Takamoto T, Agui T, Kaneiwa M, Uraoka Y, Fuyuki T (2005) Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration. Sol Energy Mater Sol Cells 85(3):429–436

    Article  Google Scholar 

  71. Nishioka K, Sueto T, Uchida M, Ota Y (2010) Detailed analysis of temperature characteristics of an InGaP/InGaAs/Ge triple-junction solar cell. J Electron Mater 39(6):704–708

    Article  Google Scholar 

  72. Zubi G, Bernal-Agustín J, Fracastoro G (2009) High concentration photovoltaic systems applying III-V cells. Renew Sustain Energy Rev 13(9):2645–2652

    Article  Google Scholar 

  73. Pérez-Higueras P, Muñoz E, Almonacid G, Vidal P (2011) High concentrator photovoltaics efficiencies: present status and forecast. Renew Sustain Energy Rev 15(4):1810–1815

    Article  Google Scholar 

  74. Fernández E, Pérez-Higueras P, Garcia Loureiro A, Vidal P (2013) Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Prog Photovolt Res Appl 21(4):693–701

    Google Scholar 

  75. Luque A, Sala G, Luque-Heredia I (2006) Photovoltaic concentration at the onset of its commercial deployment. Prog Photovolt Res Appl 14(5):413–428

    Article  Google Scholar 

  76. Almonacid F, Pérez-Higueras P, Fernández E, Rodrigo P (2012) Relation between the cell temperature of a HCPV module and atmospheric parameters. Sol Energy Mater Sol Cells 105:322–327

    Article  Google Scholar 

  77. Rodrigo P, Fernández E, Almonacid F, Pérez-Higueras P (2014) Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 38:478–488

    Article  Google Scholar 

  78. Fernandez EF, Almonacid F, Rodrigo P, Pérez-Higueras P (2014) Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods. Sol Energy Mater Sol Cells 121:144–151

    Article  Google Scholar 

  79. Hornung T, Steiner M, Nitz P (2012) Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system. Solar Energy Mater Solar Cells 333–338:99

    Google Scholar 

  80. Kinsey G, Edmondson KM (2009) Spectral response and energy output of concentrator multijunction solar cells. Prog Photovolt Res Appl 17(5):279–288

    Article  Google Scholar 

  81. Philipps S, Peharz G, Hoheisel R, Hornung T, Al-Abbadi N, Dimroth F, Bett A (2010) Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions. Sol Energy Mater Sol Cells 94(5):869–877

    Article  Google Scholar 

  82. Chan N, Brindley H, Ekins-Daukes N (2013) Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy. Prog Photovolt Res Appl 22(10):1080–1095

    Article  Google Scholar 

  83. Chan N, Young TB, Brindley HE, Ekins-Daukes N, Araki K, Kemmoku YY (2012) Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan. Prog Photovolt Res Appl 21:1598–1610

    Google Scholar 

  84. Fernández E, Almonacid F, Ruiz-Arias JS-MA (2014) Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol Energy Mater Sol Cells 127:179–187

    Article  Google Scholar 

  85. Surface meteorology and Solar Energy. Available: https://eosweb.larc.nasa.gov/sse/

  86. Erbs D, Klein S, Beckman WA (1983) Estimation of degree-days and ambient temperature bin data from monthly-average temperatures. Ashrae J 25:60–65

    Google Scholar 

  87. Almonacid F, Pérez-Higueras P, Rodrigo P, Hontoria L (2013) Generation of ambient temperature hourly time series for some Spanish locations by artificial neural networks. Renew Energy 51:285–291

    Article  Google Scholar 

  88. Gueymard C (2001) Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol Energy 71(5):325–346

    Article  Google Scholar 

  89. Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Opt 28(22):4735–4738

    Article  Google Scholar 

  90. Aerosol Robotic Network. Available: http://aeronet.gsfc.nasa.gov/

  91. IEC (2013) IEC 62670-1 ed1.0 Photovoltaic concentrators (CPV)—performance testing—part 1: standard conditions

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, E.F., García-Loureiro, A.J., Smestad, G.P. (2015). Multijunction Concentrator Solar Cells: Analysis and Fundamentals. In: Pérez-Higueras, P., Fernández, E. (eds) High Concentrator Photovoltaics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15039-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15039-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15038-3

  • Online ISBN: 978-3-319-15039-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics