Skip to main content

High-Concentrator Photovoltaic Power Plants: Energy Balance and Case Studies

  • Chapter
  • First Online:
High Concentrator Photovoltaics

Abstract

High-concentrator photovoltaic (HCPV) power plants are inherently different from conventional photovoltaic (PV) power sources due to the use of concentrator modules and two-axis solar trackers. HCPV technology is a relatively new energy source; therefore, there is limited experience in its application in power plants. Bearing this in mind, this chapter aims to provide information about the special features and performance of HCPV power plants under real operating conditions. The analysis of current concentrator modules and solar trackers is addressed to achieve a better understanding of the main characteristics of this kind of systems. In addition, different methods for estimating the energy yield of an HCPV system or power plant are discussed. This is a crucial task to analyse the potential of such emerging technology. Finally, several HCPV power plants and relevant data concerning their energy yield and performance ratio (PR) are described and commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almonacid F, Pérez-Higueras P, Rodrigo P, Hontoria L (2013) Generation of ambient temperature hourly time series for some Spanish locations by artificial neural networks. Renew Energy 51:285–291

    Article  Google Scholar 

  2. Broderick LZ et al (2015) Design for energy: modeling of spectrum, temperature and device structure dependences of solar cell energy production. Sol Energy Mater Sol Cells 136:48–63

    Article  Google Scholar 

  3. Chan N, Brindley H, Ekins-Daukes N (2014) Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy. Prog Photovoltaics Res Appl 22(10):1080–1095

    Article  Google Scholar 

  4. Consortium C (2011) Concentrator photovoltaic (CPV) workshop. Understanding the technology and related implications for scaled deployment. Solar Power International, Dallas

    Google Scholar 

  5. Fernández E, Almonacid F, Ruiz-Arias J, Soria-Moya A (2014) Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions. Sol Energy Mater Sol Cells 127:179–187

    Article  Google Scholar 

  6. Fernández EF et al (2015) Model for estimating the energy yield of a high concentrator photovoltaic system. Energy 87:77–85

    Google Scholar 

  7. Fernández E, Pérez-Higueras P, Garcia Loureiro A, Vidal P (2013) Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Prog Photovoltaics Res Appl 21(4):693–701

    Google Scholar 

  8. Fthenakis V, Kim H (2013) Life cycle assessment of high-concentration photovoltaic systems. Prog Photovoltaics Res Appl 21(3):379–388

    Article  Google Scholar 

  9. Ghosal K et al (2013) Performance results from micro-cell based high concentration photovoltaic research development and demonstration systems. Prog Photovoltaics Res Appl 21(6):1370–1376

    Article  MathSciNet  Google Scholar 

  10. Gómez-Gil F, Wang X, Barnett A (2012) Energy production of photovoltaic systems: fixed, tracking, and concentrating. Renew Sustain Energy Rev 16(1):306–313

    Article  Google Scholar 

  11. Gorder P, Kaufman K, Greif R (1996) AIAA, guidance, navigation and control conference. American Institute of Aeronautics and Astronautics, San Diego

    Google Scholar 

  12. Green M et al (2015) Solar cell efficiency tables (version 45). Prog Photovoltaics Res Appl 23(1):1–9

    Article  Google Scholar 

  13. Hadlock CR (1998) Mathematical modeling in the environment. s.l.:The Mathematical Association of America

    Google Scholar 

  14. Hashimoto J et al (2013) Field experience and performance of CPV system in different climates. In: AIP conference proceedings, vol 1556, pp 261–265

    Google Scholar 

  15. IEC (2013) IEC 62670-1 ed1.0. Photovoltaic concentrators (CPV)—performance testing—part 1: standard conditions, s.l.: s.n

    Google Scholar 

  16. Kim Y, Kang SM, Winston R (2013) Modeling of a concentrating photovoltaic system for optimum land use. Prog Photovoltaics Res Appl 21(2):240–249

    Article  Google Scholar 

  17. King B et al (2014) HCPV characterization: analysis of fielded system data. In: AIP conference proceedings, vol 1616, pp 276–279

    Google Scholar 

  18. King C (2010) Site data analysis of CPV plants. In: s.l., 35th IEEE photovoltaic specialists conference

    Google Scholar 

  19. Lee C-D et al (2007) HCPV sun tracking study at INER. In: IEEE 4th world conference on photovoltaic energy conversion, WCPEC-4, Waikoloa, p 1

    Google Scholar 

  20. Leloux J et al (2014) A bankable method of assessing the performance of a CPV plant. Appl Energy 118:1–11

    Article  Google Scholar 

  21. Luque A, Sala G, Luque-Heredia I (2006) Photovoltaic concentration at the onset of its commercial deployment. Prog Photovoltaics Res Appl 14(5):413–428

    Article  Google Scholar 

  22. Magpower (2011) Performance in practice CPV versus PV, 1.5 year of operation. In: s.l., 3rd concentrated photovoltaic summit USA

    Google Scholar 

  23. Maxwell, E. L., 1987. A quasi-physical model for converting hourly global horizontal to normal direct insolation, s.l.: Solar Energy Research Institute

    Google Scholar 

  24. Nishimura A et al (2010) Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system. Appl Energy 87(9):2797–2807

    Article  Google Scholar 

  25. Pérez-Higueras P, Fernández E, Almonacid F, Rodrigo P (2014) Flat photovoltaic modules at ultra high concentration. In: 29th European photovoltaic solar energy conference and exhibition, Amsterdam

    Google Scholar 

  26. Pérez-Higueras P, Muñoz E, Almonacid G, Vidal P (2011) High concentrator photovoltaics efficiencies: present status and forecast. Renew Sustain Energy Rev 15(4):1810–1815

    Article  Google Scholar 

  27. Pérez-Higueras P et al (2012) Simplified method for estimating direct normal solar irradiation from global horizontal irradiation useful for CPV applications. Renew Sustain Energy Rev 16(8):5529–5534

    Article  Google Scholar 

  28. Razykov T et al (2011) Solar photovoltaic electricity: current status and future prospects. Solar Energy 88(8):1580–1608

    Article  Google Scholar 

  29. Rodrigo P, Fernández E, Almonacid F, Pérez-Higueras P (2013) Models for the electrical characterization of high concentration photovoltaic cells and modules: a review. Renew Sustain Energy Rev 26:752–760

    Article  Google Scholar 

  30. Rus-Casas C et al (2014) Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Convers Manag 78:527–536

    Article  Google Scholar 

  31. Swanson R (2000) Promise of concentrators. Prog Photovoltaics Res Appl 8(1):93–111

    Article  Google Scholar 

  32. Verlinden P, Lasich J (2008) Energy rating of concentrator PV systems using multi-junction III-V solar cells. In: s.l., 33rd IEEE photovoltaic specialists conference

    Google Scholar 

  33. Wang X et al (2012) Lateral spectrum splitting concentrator photovoltaics: direct measurement of component and submodule efficiency. Prog Photovoltaics Res Appl 20(2):149–165

    Article  Google Scholar 

  34. Wiesenfarth M et al (2012) Advanced concepts in concentrating photovoltaics (CPV). In: s.l., 27th European photovoltaic solar energy conference and exhibition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pérez-Higueras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pérez-Higueras, P. et al. (2015). High-Concentrator Photovoltaic Power Plants: Energy Balance and Case Studies. In: Pérez-Higueras, P., Fernández, E. (eds) High Concentrator Photovoltaics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15039-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15039-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15038-3

  • Online ISBN: 978-3-319-15039-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics